_ AFTT/GE/ENG/93M-01 ‘ B D T l C o
. @A ELECTE o
A262 490 Q) RS 193

[T c

SPEECH RECOGNITION USING VISIBLE AND INFRARED DETECTORS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Tecknclogy
Air University
In Partial Fulfillment of the
Requirement for the Degree of

Master of Science in Electrical Engineering

Patrick T. Marshall
GS-12, USAF

~ 93-06895
" September 1992 AR \\\\\\\\\M\\N\\\\\\L\\\l\ 1

Approved for public release; distribution unlimited.

98 4 02 0 5 4 Reproduced From

Best Available Copy

- 000/03617/

Acknowledgments

Many thanks to my fellow Hanger Rats who I work with and who helped me make

this research effort become a success. I want to thank my supervisor, Mr. Daniel Murray,

who supported me throughout this effort. T want to also thank my thesis advisor, Dr.

Matthew Kabrisky, who not only provided the technical expertise to keep my research

going in the right directioﬁ but who also allowed flexibility to explore my ideas. Finally, I

would like to give a special thanks to my wife Janet for her support and encouragement

durixig the last six years.

Patrick T. Marshall

Accesion For

NTIS CRA&I
CTiIC TAB
Unannounced
Justiticaticn

ooE-|

By

Dlstbribution {

" Avaiability Codes

Dist

B

Availl and/or
Special

Table of Contents
Page
Acknowledgments............. esseaetebertsbertaasatanarensrstasssanetstsastsasstssebesssesne saenesserssrsannse R
List of Fxguresv
LSt OF TADIES vecvvvresssersrsessssesssssasssessssssosssnsssessassssssssassssssssssssssssssssassssssssssasssssesssns vii
ADSITaCt....ccevveencssisrecsusnresesans eessesennesaene e s R s e aee s viii
I Introductionccoesnsensncssensanncs seestusuecssenssnstorassoraseoraseOLLIIRORHS S SROL LS st SRt SRt e s s Re 1
1.1 Backgroundcc.ceueue veseessssanes seessssttssesaiesteasersisttosasesertisassnsnssas 2
1.2 Objective Statement.......cccceusine ' creesesssisniseesaisansnsensosses 3
1.3 Approach.......cceeucue ceesassteeasssnensrsarestesrseratasssnsnenes 3
II. Analog System DESIZNS. ..cccvrniirnnmrisesesssmensiinninsssisenssssessnssssnssesisssssssesssnsasssassss 5
2.1 Passive IR System eemssnestssesnesnertsensasaesresssasresatensatestsansnterasenesteraressnsesas 5
2.2 Active Visible SYSICMSc.c.ccvvrirerrrersenrscsansssesssssnasns ereessassensnersanes - 10
2.3 Active Photo AM SYSIEM....cccovicrricrisrncsennssssesssesstsssnsssesssosssssssssnssassnsssassns 11
2.4 MICrophone SYSIEM...ceceirrersnesassnsesssssnsssasssssonsssnsssissnsessans 18
2.5 Active Photo DC-Coupled System reesensssssnnssesntesanasassnsesassasantansens 23
II Data Collection . esstessssressrassssanssesssssnasistsons 30
IV. Speech Processing Algorithms.... ‘ ' 32
4.1 Audio Energy Distribution:. easeseisaresasstnes 32
4.2 Locating Words: resesensessasessnssstentasassassonte 36
4.2.1 Post processing word boundary verification algomhm used
for isolated and continuous word recognition usmg no sensor
fusion infOrmMation:.......c.covvcerisressnssensecsessnosssseses .37
4,22 Post processmg word boundary verification algorithm used
for template processing and isolated word recognition using sensor
fusion information: 37
4.2.3 Post processing word boundary verification algorithms used
~ for continuous word recognition using sensor
fusion information: 41
4.3 Word Segmentation: 42
4.3.1 Photo segmentation post processing: 43
-4.3.2 Audio segmentation post processing:........... 43
4.4 Template ProCessing:c.cevsuscccressessssassssassassssssssossssssssossssanssssansnes e 43
4.5 Speech Recognition: eriasstssesseasarererasstsaerienens 47
4.5.1 Non-sensor fusion word recognition: 47
4.5.2 Sensor fusion word recognition:ecsueseesseneesss 47
iii

V. TSt RESUILS .uceurvcrenirensisensssecnssisisonssscsssssssssnensensaserasssess veesesassassrane ' .49
5.1 Isolated, speaker-dependent recognition using no sensor fusion ,
ANFOIMALION ...uvivenrreerrrereseenssssssenssssssssssssssssessssssssanssess ... 50
5.2 Isolated, speaker-independent recognition using no sensor ' »
fusion INfOrMAtIONcevierisinsiinnninresssienisesnsasenssssasssnsssssaisnsassnsnesassasnsanssnsses 53
5.3 Isolated, speaker-dependent recognition usmg sensor fusxon
INFOMMAON ..cuvcveririecrinreiienniriineassesnenssssssssnerisesssssssssassons ersessnesseasenens 54
5.4 Isolated, speaker-independent recognition usmg sensor fusion
INFOMMALION.....civiiiviiiriintiiitiiniciniessssiesessssessseensstsssasssssssssssssssarsassnsssesess e 35
5.5 Continuous, speaker-dependent recognition usmg no sensor fusion _
INfOIMAtION....cuiiiirnrierisncsnnesesesssnsesssssssssnssassassasnssasseonssns .55
5.6 Continuous, speaker-dependent recognition usmg no sensor fusxon
INfOIMALON. ..cvevreerirrersesssernesnrsenssn st ssetenssannsitan . cressarennesiasaese 55

~ VL Conclusions and Recommendations..............ueeissseessessenss voressrnessanesssssssssssssssssarens 5T

APPENTIX A, Data Acqunsmon Board Demgn cerssrennsnnane ‘ 61

APP.:. NDIX B. SOftware DESIZN c..ceceerrraerersecensseraessernssnesesserssssssssassasssssessonsssasenssassassase 69

APPENDIX C. Computer SOftWare........cceevessecaresaccnessacsasrasasssnes ' veeeia 15

Bibliography veresreneeaenetssenesanersesssresaebeses veseenssesressaresssransasnesees 197

iv

¥ 90 N A wmoa W

Figure
1. Geometry of thermal detector ASR LESt SEIUD ..vvuvesnrvemserssssessssssosssssnnsssssssessssasesssssenss 6
IR DeteCtor CitCUil....uiuiirisensinisisssisasssrssiscsssasssnssssessssessssessssissssessssssssssssasssasssssssases 8
IR speech signals........coevevenrenasnns etesisesssassssassnssersersasnsanineasns ernesnanenisnsssassnssesssnssssases 9
Diagram of proposed AM PhOLO SYSIEM cveveessssssseueusssssssssssssssssssssssssssssssssssssssnns e 12
AM photo CirCUit....vccererecrisenrinirenesenes eensrestsas st st bbb st enstssbsestenses 14
Photograph of audio/photo ASR NEAdSELccvieeerireessrersasssansssesssanssssassarsssassssssassss 1'5
Example of the word "one” for AM photo signal........ccevemcnnrciinnernsinsesessesassnssens 16
Parameters used in AM photo equatioh sesesssssetsussssasnenes resessssssssisssesssssssessssssns 17
First version microphone CirCuit.......cccerscrrencarsnsensanssesarssnssssssssenns e 20
10. Audio signal for the word "zero" .. reesesatsssesnertsssessaasatons 21
11. New microphOne CirCUItoivrcecinninsensnssisessssssessasssssesssssnssssssssassssassassnssasssssssansass 22
12, ACtV VISIBIE ASR SEUD..eevrrerseerssseoreseesssessessessssssessesesssesne S 2
13. Photo of new headset Setup bEing WOovceuernseniensensansnissssansscsssssssnsasssessasssssass 25
14. Geometry used for DC-coupled active photo ASR system e 26
15. DC-coupled photo circuit ceesesnssssnsaressesssnsnsaseres ; .28
16. DC-coupled photo signal for the word "eight"civcrninirneninrnennnneer ceereseesaenns 29
17. Unfiltered audio energy blot (N=250)...0000ieemmrisuissrssansncssressassessassassassarsssssessnssasnns 33
18. Filtered audio energy plot (N=250)ccoeersrenriesssusconsassanssesssracssssassnensessorsrsassasaosas 34
19. Filtered audio energy plot (N=300) .. .35
20. Filtered audio energy plot (N=400) “ 35
21. Example of audio energy distribution being used to verify photo word................... 39
22. Example of comparing the phase of the photo and audio signals............cceevererereennee 42
23. Example of photo frequency information content for the word "one"cecounens 4

List of Figures

e — N
- » N\
- - \ A -
. - e -
-~ I g

24, Example of audio frequency content for the word "one".......ccceeeresesuscnsersonens 45
25. Example of a photo template for the word "five"........ccevrvnnssesnssssncnsseessenes —— 46
26. Example of an audio teraplate for the word "five" sesssenssoes 47
27. Example of Jill's audio word "three” with breath noise oees veennn 52
28. Example of "Mary" not keeping her mouth shut prior to speechcccveeerrecrveceerees .53
29. Example of photo differences between SUDJECES covveueviases
30. BIoCK diagram Of A/D DOAIAuevvusmesesssnssnssesssssssssssessassssssssssssssssasssssasessses .61
31, Main PC interface/control circuit diagram (sheet 1 of 3)........c.... ' 63
32. Timing diagram for A/D board............. e 65
33. A/D board timing/control circuit diagram (sheet 2 of 3)66
34. A/D board signal processing circuit diagram (sheet 3 of 3).. . .67
35. Software program block diagram........ - " eeueenenes 69
36. (a.) DTW algorithm path with m=n (b.) DTW algorithm path with m>n 73
vi
e o I e e T T

List of Tables

Table : Page

1. List of isolated and continuous words used in experiments........ccceceveeseescnrsunae veesaess 30

~ 2, Example of initial word segmentation reSultsccevueerersnverernreescensrsennssscssnssonsaess 40

3. ASR results........... . ressresessresssssasessssssessssnsnssssnasassss S0

vii

A system has been developed that tracks lip motion using infrared (IR) or visible

detectors. The purpose of this study was to determine if the additional information
obtained from the IR or v_isible' detectors can be used to increase the recognition rate of
audio Automatic Speech Recognition (ASR) systems. To accomplish this goal, se\feral
hardware analog prototypes had to be designed, built and tested. Different detectors (IR
and visible) and modes of operation (active and passive) were tried before a reliable and
useful signal was found. An analog-to-digital (A/D) board was then designed_and built
that digitized both the microphone and photo signals. Software algorithms, executed from
a desktop PC, were used to interface wiih the A/D board, process the digitized data, and
perform certain optical and audio ASR experiments. The results showed that isolated ASR
audio recognitidn rates increased after asing additional information gained from the photo
speech signals. However, the results for the continuous case were inconclusive since not

all of the available photo information was utilized to perform ASR experiments.

viii

SPEECH RECOGNITION USING VISIBLE AND lNFRARED DETECTORS

L l.ntrodtiction

Speech Recognition is the process that converts acoustic sound waves generated by
human organs into the equivaleht of a type sccipt file. ASR technology is the human-
machine interface .(hérdware and/of software) that accomplishes this task without ziny
6utside assistance. For decades now scientists and engineers have been trying, with some
success under carefully controlled conditions, to create such a system. Most of their time
and efforts have been concentrated on deriving and/or implementing special algorithms
that process audio information only. However, there is additional information other than
the audio signal that could be used in the recogqition process. Deaf people, who are
trained lip-readers, use this information by observing certain visual queues produced by
the mouth and surrounding areas. This same information is potentially availablg to ASR
systems which, if usable, will most certainly increase recoénition rates. ’

Why is ASR technology so important? From a military standpoint it should heip

bridge the distance between the current generation and next generation aircraft. This is

because the present human-machine interface in cockpit technology seems to be nearing its
limits. Current ccckpit tecnnology frequently requires the pilot to flip some switches or |
“turn a knob while usually monitoring a LED (light emitting diode) readout. Voice- |
controlled avionics could allow the pilot to command his mrcraft simply by talking to it.
The end resuit should be an increase in fighting performance’ to help insure that the United
States Air Force maintains its air superiority.
ASR technology could also be important for some office and industrial

appl%cations. It would be much simpler to talk to a computer while data processing.
However, it is the keyboard that is currently the major player for inputting data to a

computer. Simiply put, there is no commercially available ASR system that is fully

operational at a reasonable price that could 2ven begin to replace the computer keyboard.

1.1 Background

Basically there are two modes of operation for speech recognition: isolafed and
continuous. By definition, isolated speech recognition is the identification of singly
spoken words. In other words, the speaker can onlylsay one word per recognition run

“Equipment using this mode of operation is commercially available and has enjoyed some
success in carefully controlled .applications. This is due, at least in part, to the fact that the
speaker has to insert a pause between words. In low noisé environments the computer can

easily find the word boundaries and activate the neceésary algorithms to match the entire

word utterance ag_ainst stored prototypes of allowed %vords. However, it is unnatural for
humars to be forced to put pauses between words wl!mile talking.

Continuous speech recognition is the ability tL) recognize words in natural speech
(i.e., no forced pauses are required). This mode of operation is the potentially most
important one'and unfortunately is also the hardest ojne to accomplish. The biggest .
problem is trying to find where words begin and end in a séntence. However, this problem
may be lessened with the use of additional information m the recognition process.

An optical ASR system incorporates visual and/or infrared (IR) information to help
increase recognition rates. Most reported reséarch inko optical ASR utilized a video
camera to record visual data followed by the analysis of static video images to perform
optical ASR [1]. The basic theory of operation is to digitize video images of the mouth at
certain positions and use them as templates while performing ASR. Unfortunately these
are very corﬁputationﬂly-imensive systems. The camera alone would output video data at
"S mega-bytes per second.” In addition, a data reduction of about 7500 to 1 had to be

performed on the raw images to extract the mouth information. However, it was shown

that optical ASR greatly increased recognition rates compared to acouctic recognition

R S e B T e

alone.

The next generation of optical ASR systems.were snore dynamic in that they
evolved from using still images as templates to é systera that tracked lip motion [2].
Windows were placed at strategic locations sufrou_nding the mouth (one at center of top
lip, one at center of bottom lip, and two at comeré of mouth). Algorithms were then used
to caiculate the mouth motion within each window. The two results, mouth eloagation and

mouth opening, as functions of time were utilized as features. As before, good recognition

results were obtained.

1.2 Objective Statement

The objective of this thesis is to determine if additional information obtained from

IR or visible detectors can be used to increase the recognition rate of an audic ASR

system.

1.3 Approach | ’ ' |
The first step in this project will be to create an analog circuit that accurately |
records lip movement using IK or visible detectors. The circuit will brepare the signai for

further digital processing. However, several designs may be evaluated before the analog |

signal can be digitized. This is because a reliable and useful signal must be found which

meets the following specifications for photo ASR [3]:
- The signal must reliably track mouth movement as a function of time.

- The signal has to be repeatable so that similar words have identical signals.

Once an adequate photo speech signal is found, the microphone's analog circuit will then
be designed and built. This circuit will built along with the analog photo circuit on the

same board.
The second step will be to design and build a two-channel A/D board that digitizes

both the auuio and photo signals rrom the output of the analog board. This A/D board will

reside inside a PC. The converted signals will then: be stored as raw binary data on a hard
drive inside the computer. | _
The last step will be to develop the éoftware tools necessary to interface with the
A/D board and procesS the data for berforming certain optical and audio ASR experiments
listed below. In each case the main objéctive will be to obtain as kigh a recognition rate as

possible.

1. Isolated word, speaker-dependent recognition using no sensor fusion
information.

2. Isolated word, speaker-independent recognition using no sensor fusion
information. o

3. 1solated word, cpeaker-dependent recognition vsing sensor fusion information.
4. Isolated word, speaker-independent recognition using sensor fusion information.

5. Continuous word, speaker-dependent recognition using no sensor fusion
information.

6. Continnous word, speaker-independent recognition using o sensor fusion
information. -

7. Continuous word, speaker-dependent recognition using sensor fusion
information. . :

8. Continuous word, speaker-independent recognition using sensor fusion
information.

IL. Analog System Designs

2.1 Pnssive. IR System

For a purcly passive system (i.c., no optical source), an IR detector should operate
better than a visible detector for ASR. This is mainly because a visible detector is totally -

dependent on external lighting (e.g., the sun, office lights, etc.) whereas the IR detector

only requires a scurce of radiation. Thus it was decided that a passive IR detector would

be first tricd for ASR.

The mouth acts as a heat source whose blackbody function peaks at about 9 um.
Radiation from the mouth is contrasted by the areas surrounding the mouth which are ata
coolgr temperature. This can be seen in an IR vidco of a person tatking. The ASR
specifications for a single IR detector are listed below:

- Spectrum includes 9 um

- Field of view covers widest mouth opéning (about 1 inch at 1/2 inch distance)

- Compact in sizc

- Have a response time faster than the mouth can move (about 25 Hz)

Several detectors were tested that met these requircmcnts. One in particular had
the best response with respect to mouth movement - a muRata ERIE IRA-F001
pyroelectric detector [4]. These detectors use crystal polarization to sense a change in
temperature. An output voltage only occurs when there is a change in tcinpcraturc.
Consequently, most thermal measurement applications use a chopper to record the
tcmperanire of still objects [5:7]. However, a chopper should not be necessary in this
effort since the nbject being measured (the mouth) will be in motion during an ASR

recording.
Figure 1 is used to determine the optimum mouth-to-detector distance for the arca

covered by the detector's ficld-of-view.

Figure 1. Geometry of thermal detector ASR test setup

The solution for "d" is shown below,

d = w/2/tan(a/2) = 0.596 inches ' (¢))

~ where

w = width of mouth at widest position (approximately 1 inch)
d = distance to mouth (inches)

a = detector ficld of view (R0 degrees)

Since pyroelectric detectors are thermal devices, their wavelength response is

theoretically unlimited. As a result, these are ideal for use in the far-IR (8-14 um) band.

\

" Itis interesting to note that these detectors are a close cousin of the piezoelectric |
microphone. Most manufactures try to eliminate one effect or the other in order to
optimize a particular application (thermal or audic). Quite conceivably someone could
design a single detector to simultaneously record both audio and IR information. Of
course the data strcams would be fused together and signal processing would have to be
implemented to scparate, if required, the two signals.

The electronic circuit used to interface with this detector is shown in Figure 2.

This is a simple bandpass amplifier circuit with f] (low frequency cutoff) at about 1/2 Hz
and fj, (cutoff frequency) at about 5200 Hz. |

The circuit along with the detector was mounted on a PC breadboard. The speaker
had to lean over and talk into the detector and maintain about 1/2 inch distance in order to
‘generate a usable speech signal. The output of the amplifier was measured using a strip
chart recorder which can be seen in Figure 3. . |

It is quite obvious from Figure 3 that this signal does not meet the photo ASR
requirements - a repeatable signal that reliably tracked mouth motion. Due to the AC
coupling in the circuit and the inherent nature of the pyroelectric detector, a signal -

| occurred only while the mouth was moving. BHowever, this test clearly demonstrates that it

is possible to detect the boundary between words. This raises hope that some useful photo
system may be fo@nd. Instead of trying to improve this circuit, it was decided that an

active visible system would be tested next.

nnoID uSoo.aoQ 5 AR

d i J | ;| 1 \'
Yoo maurn] e
N LNOWD OOTYNY BOLOAUIO Bl ony
Y
revin
= Ly AN
Yy K wmt,. \an.:“:
T TS
D) ,
bogd § ».v
t4 M : w.mmp
foy
Ry =i =yemd -
WY SSvd AN MBS =W wyOoRd)
: . $3vd A0
3
!
i) I 3 I g I i

\
,, A/ _,,
// 4,,//
\ -
/.
(-1 spiom Jo sajdnjnur) reusis yosads JI ¢ a3y)) Lo
()]
//.,
\
(
,\
./
:
o
L ' . \] | " /
.) " ' N . :\) ,./ . ' ' - Al N

2.2 Active Visible Systems

An active visible ASR system is one that incorporates a LED as a source of

radiation and a photo detector to receive the signal. The idea is to illuminate the mouth

- with the LED and have its reflected signal sensed by the detector. Unlike the thermal

detector, a photo detector detects photons directly. This is accomplished through the

: _ihteract.ion of photons and the P-N junction of the semiconductor. Arriving photons of

sﬁfﬁcient energy will excite electrons across the energy gap. The resultant voltage
poténtial will be a function of the amount bf light that arrivés at the surface of these
serﬁiconductors [6:117]. |

One of the lessens learned with the IR circuit was that head movement caused the

signal to not be repeatable. To compensate for head movement, the visible detector was:

| mounted, along with the LED and microphone, on a head set.

Another probiem with the previous IR circuit was that without a chopper, no
constant voltage output would occur for a constant thermal input. Eventually the voltage
signal would peak and go back to its baseline. Using AC-coupling would have had the
same effect. This configuration is not optimal because it is important that the detector's
output be a function of mouth position. A system had to be designed that would output a
small voltage (around zero) wheri the mouth was closed and a large, "constant" voltage
when the mouth was opened and remained open (or vice versa).

There are at least two ways to meet these requirements while using an active LED
as the source and a photo detector as the receiver: (1) use DC coupling for the entire
circuit or (2) use AC coupling with an AM (Amplitude Modulation) signal whose
modulation is a function of mouth movement. The advantage of DC-coupling is
"simplicity”. All that is required is filtering, amplification, and offset adjustment.
Unfortunately, DC offset adjustments can be cumbersome if the signal is not well-

behaved. For instance, if there are any sizable offset noise shifts, such as headset

10

movement, the phoio signal could saturate the electronic ampliﬁér circuits and never be
seen at the output. |

The most attractive aspect about AM is that the signal requires no offset
adjustment. However, either the hardware or the software has to perfdrm additional signai
processing to extract the carrier's envelope. Usually an envelope detector is implemented
to perfoﬁn this operation, in addition to the filtering and amplification that the circuit must
also accomplish. | |

The AM photo system was chosen, over the DC system, to be evaluated next. It
was feared that there would be excessive noise caused by headset movement. This was due

to the fact that the headset was not lightweight and was somewhat uncomfortable.

2.3 Active Photo AM System: A diagram of the proposed AM system is shown in
Figure 4. The theory of operation is to generate a LED CW (continuous wave) signal that
is amplitude modulated by the mouth. The circuit used an oscillator to generate a constant
frequency square wave which was sent to a LED to generate the CW photo signal. Since
the LED rectified the signal, there was very little d{ffereﬁce between using a square wave
instead of a sine wave. The signal was then modulated by the mouth and detected by a
visible-to-near-IR photo detector whose output was subsequently filtered and amplified.
Signal processing was accomplished with softwm to detect the envelope.

The detector and LED was located fairly \ lose to the mouth (about 1/4 to 3/4
inches) to obtair: as high a S/N as possible. Soml noise arrived from surrounding artificial
light sources. To counter this, the CW frequency was adjusted away from the frequencies
of some noise sources such as 60 and 120 Hz. |

Advanced Optoelectronic’s 44PHOSM near IR photodiode was chosen as the
detector to receive the AM signal [7). Its large active detection area (17 mm2) helped
increase the S/N. Likewise, the 44PHO5SM's peak wavelength occurred at about 950 nm

11

which also helped increase S/N since this specification was located outside the fluorescent

light spectral range and at a dip in that sun's spectral absorption band [6:116].

- e—
Mouth Mouth Mouth
Closed Opened Closed

Figure 4. Diagram of proposed AM photo system

To transmit the light, a Radio Shack Super-Bright LED was used. This was one of

the brightest yet smallest LEDs sold by Radio Shack.
There are basically two modes of operation for photodiodes - photovoltaic and
photoconductive. The main difference between the two modes is biasing - the
~ photoconductive mode uses biasing and the pho_tovoltaic mode does not. Another
difference between the two is that the photoconductive mode has a faster response time.

However, it is inherently noisier due to an increase in shot noise [6:119].

12

A 450 nsec response-time speciﬁcation for the photodiode was quoted for the
photovoltaic mode. This is very good since the CW frequency was adjusted to around 279
Hz which is well below both this specification and the LED's rise and fall times of about
1.0 usec. Asa résult, a fast response time for the detéctor was not critical and therefore

- the photovoltaic mode was selected for this effort. |
.A schematic of the circuit is shown in Figure 5. A photodiode 1s basically a current
- source that when illuminated, generates an output that is‘proportional to the light intensity.
To convert the current to a voltage, a transimpedance amplifier was used in the first stage.
The voltage signal was then filtered and amplified which was previously checked by
sweeping a sinusoidal waveform through its bandwidth and anerving the resuits on an
oscilioséope. | ‘
Since the A/D board Sampled the pnoto data at about 2.5 KHz (fg), the signal's
highest frequency cannot exceed fg/2 or abdut 1.25 KHz. Taking into account system
“noise, a good ﬁgureQOf-merit is fg/S or 500 Hz. To be safe the CW frequency was
adjusted, as mentioned earlier, to nround 279 Hz.

As can be seen in the schematic, the bandpass filter frequencies are 200 and 400
Hz. The output of the bandpass was then amplified twice before being sent to the A/D
board. Since the CW frequency was less than fg/5, aliasing was not a problem and, as a

o consequence, a software algorithm was used to extract the signal's envelope.

The headset and analog circuit were adjusted for as large an amplitude signal as
possible that was within the A/D's +/- 2.5 volt range. Also they were adjusted to achieve
the largest mbuth open to mouth closed signal as possible. A photo of the head set after
adjustments, is shown in Figure 6. As can be seen, this is a crude version of comrnercially
available microphone headsets. An additional benefit to using the Radio Shack LED was

that it emitted a visible red spot on the mouth that was used during alignment of the

headset.

13

" 3momd ojoyd)NV °S 2InSig -

A
\w‘
d I 3] g I v o
oy e & ,
o - J' Fﬁ i
¥ QN9 DOWNY QIOHd . M »| ._,
neaq 4080 o] - v
%WT = !
| . . = - ﬂ. V
) [] " [(=3 '
- ‘.
- . N
- . ™~
£]: — .
r'y 4580 PSBO - P
22 BB — —
e <
-y
— _ L.« o™t [~

N y ‘ ,H , L
. ; g — w3R o 4 K
v N TR T e | o . o
b g H T T n

Y
L4
[}

o™

ey

Pt 1] o\ A
i SSvd A1 N =0} ey iy T t : .
S$Svd HOH 2NV =
.,\"\
S |

X | Figure §. Photograph of audio/photo ASR headset

An erample of the word "one" for the received AM photo signal is shown in Figtire
7. Both the time and frequency domains are shown. ' The small peak at 120 Hz was due to |
ambient light noise. As can be seen, the S/N was very good. From thxs ﬁgure, sunple -
mathematical equations describing the AM signal can now be derived. | .-
For this discussion we will assume that only a single sinusoid signal is emitted
from the output of the LED. This should be valid since the harmonics of the actual ‘ :

square-wave were filtered-out in the analog circuit.

15

-~
.
- Rl S T T T D Y S m
|

am Photo Time DOomain Speech Plat :
@
. 12
/ ~
qQ
‘ p"
- 2
‘ 3
T
Time (soc)
600 Photo Freqguency Domain Speech Plot
BG40 + Freg res. = 0.61035% P?z
- 1 Start time = 0 sec
430 ' Stop timo = 0.9992 coRc
420
o &5 4 !
0
2 o0
\ d
~ g 240
160 +
120 ¢ 4 ‘
0 , . : A ’ , aypens m_ﬁﬂwﬁ’{ %
0 20 €0 30 120 150 180 210 240 270 200
Frequency (Hz) R
Figure 7. Example of the word "one" for AM photo signal
A pictorial description of the components of the active photo setup can be seen in
Figure 8.
16
»\\‘ \\\;‘\ i, ;) \ N
. T *:;\\‘ ’ \ - s o ‘
S ~ =

e B R B I IR A ey

h(t)

Figure 8. Parameters used in AM photo equation

The basic AM equation for the above figure is shown below

£(t) = K+[m(t) + h(t) + H]scos(wcxt) + n(t))

where

f(t) = resultant photo signal received at detector

m(t) = mouth movement signal

h(t) = headset noise signal

H = constant DC offset that is a function of the emitter/receiver distance tb mouth.
W, = emitter (carrier) radian frequency | '

n(t) = ambient light noise from external sources

K = LED osciliator gain

Photo ASR information is cont_ained in "m(t)" - the mouth modulation signal.' Itis
the main signal of concern for which all signal processing (both hardware and software)
was desighed around. The majority of thé arﬁplitude for "f(t)" came from "H" which was,
up to a certain distance, inversely-proportional to the distance from the headset to the

mouth. When a certain minimum distance was reached, most of the signal did not reflect

17

i RN iR, kg A e QIR i o i sgiarsoudiiie A
B e i R R SR R BB

T B S R S e B i s L

i T SR

back into the detector and the ampl'itude of "f(t)" started to decrease. Increasing the
headset-to-mouth distance had the same affect - after some optimum distance, "H" started

to decrease. This relationship defines "H" as a noa-linear geometric function of the

. mouth-to-headset distance.

The ambient light hoise term is "n(t)" which could be light received from the sun
and/or, as we saw in an earlier figure (see Figure 7), artificial lighting. The affect of this
noise term was minimal since the S/N was high when "H" is adjusted for as large
amplitude as possible. The most significant noise term was "h(t)" which was generzated
when there was head movement or, in other words, a change in the headset-to-mouth
distance. The affect on the resultant AM signal "f(t)" was an amplitude change.
Unfortunately "h(t)" was the hardest signal to filter-out due to its signal content (frequency
and amplitude information) being approximately that of the "m(t)" signal. This was
determined after some experimentation with the headset and analog circuit whose output
went to a spectrum analyzer.

The resultant signal, after hardware and software processing, contained both "m(t)"
and "h(t)" terms. Most of the "n(t)" noise term was filtered out by the analog circuit of
Figure 5. But the "h(t)" noise term still existed even after filtering. However, it was
determined after some trial runs that under static conditions (i.e., the subject was sitting
down and not moving around), the "h(t)" term goes to a very small value and was not

significant.
1

2.4\ Microphone system: A schematic of the microphone circuit is shown in Figure 9. A
Radio Shack PC-Mount Condenser Microphcne Element was used as the audio transducer.
It was mounted to the side of the photo detector as shown in the photograph of Figure 6.
The microphone’s output was amplified between 20 to 420 times and then bandpass

filtered. Since most of the frequency spectrum for audio lies below about 5 KHz [8:33],

18

the highpass cutoff was choscn to be § K_Hz. A

Since the microphone's output was also its power sﬁpply input, power supply noisc
can easily be coupled into the signal. Unfortunately a PC's power supply is very noisy. As
a result, a 9V chemical battery was usced to power the microphone instead of the PC's -
internal +/- 5V electrical power supply. '

- An example of the audio word "zero” is shown in Figure 10. The periodic noise
that is seen before the actual word was due to cross-coupling of the photo CW signal into
the audio signal. The frequency of the photo signal we.s purposely decreased so that its
coupled period could be observed. The source of the noise was traced to the flat-ribbon
cable whose lines carried both the photo and audio signals, in'parallcl, te and from the
headset. This was a serious problem because it required repl&cing the current light-weight
ribbon cable with shielded lines such as RG-188's. The end result would have been a
bulkier, heavier setup that would probably be more uncomfortable thus increasing headset
movement noise "h(t)" for the photo signal. Also there was no guarantee that the coupling
noisé would have been completcly eliminated. Since there are no clock signals used in the
DC-coupled version, it was decided that this systecm would be evaluated next before a

major overhaul of the headset was accomplished.

19

101> 9uoydodi UOISIdA 1SIL] °6 angiy

[] 2w w0
QO DOTYNY INOHIOUM vy H
s=
-
) —
A um
neR0 W90 nesq JeE0 @ —
ir
o nuwju.”~ 3 e ;
[= e —vr— 'S P &r..[
e Uy >~ =3 > 3 X 33
LSOV DL/TCNI Lsava ~on B8 =y o
o e Q
L..%i o te o
AWLNINDD Gl
G~
4 o= -
o (/2%
numr.l+ : o5 m.b ronn m}a
11
>in s T n x ﬁm Jumm&r - x5 LA ner e
& "n& ma “6 t . L m
= f Towe
N7 e -
PR S X YELL L s =Nty weds S euBoyenE (LT AT LA
S AN SSvd A STV AON Thed UM i8
- r 5 T 5 I -
5 G
e e .

Photo time Homain ¥peoch Flot

i.s 2ora ; ﬂ“] ;

ga | ’ MM W 1" NTTIEE

: I"" ":"'.'h'“ ":‘:'r”sl:h':":t'"’l”’q ”M“ ‘“ ﬂ '!I’."l"";'::‘l:"l:l:“

3';~ ". ::""':".””":""i f.:l " :"c". l': :: :l .' ¢ :E iﬁﬂ},‘il,;i;ﬂ” ”|:|”'”|’

o it T VRV g

N TR R LR | ‘*""'f*' Yt

o (T L

-2 .

=0 o1 0z 0.3 04 ““&‘_5‘“) 0.6 0.7 »’J.ve 0.5 1

a5 Microphone Time Domain Speech Plot)

i

s '

H

0.6 “ :

L0 pri . By

L:"-II).E [\

o

-3

ik |
c 0.5 0.9 !

Tine (seC)

Figure 10. Audio signal for the word "zero”

Before going on to the next section, note the signal noise between about 0.8 and

1.0 seconds in Figure 10. This was caused by reflections in the transmission line due to

impedance mismatch between the analog circuit and the data acquisition board. The

~ solution was to put line drivers and receivers at each end of the transmission line. The

new microphone interface circuit shown in Figure 11 contains a line driver. With a few

exceptions, this circuit was basically the same as the previous microphone circuit.

21

;
/
1

N
. AN
N
NN
nnoapo auoydooiw maN 11 andig NN
I o} - | - ¥ N
Ar
. , F...m._a N
) _ mena 3060 =
\ %m 24e 4z £ '
wunu O m m
v = L W - R " =
|| . : . 135Qv3H O/ . A' 13sav3n =]
= =
N " 4esg mesg H= = €
212 873 6O fnmi=
——t T
o ~u o sé o Q
- nr T3 -
UILNANOD OL/NOUS
ao- .
Av AS—
z % 4 .
oY m-b _ .
neg =52 cL
Tt may o I L rLyn §+a . i
I - woi | ey MY - [T
A8 ol M- " i ¢ ||) o
] Ft] e A .
i ASt : K N . /T
nomewTYREeywd N = =y y // \
SSYd M1 SSVd M : PP] TRl 1 2 //)
: SSvd MO $SVd HOH RN N
) : * ' N
e Mw
a 1 o] 1] 1 Y

RN RS A u s
W, e . VA - PR PP -
N s A . e PN . RN . e W\
Vo e /_ . L P / Ao . -

\ PR) e .- R “

2.5 Active Photo DC-Coupled System: Silicon Detector Corporation's (SDC) SD-020-

11-11-011 red/IR photodiode was chosen as the detector for the DC-coupled photo system
[9]. In addition, their super high-output GaAlAs IR emitting LED was chosen to be the
emitter. Both déVices' have their peak wavelengths matched at about 880 nm. A diagram
of the new setup can be seen in Figure 12,

The new "f(t)" signal, which is shown below, was similar to the AM signal but -
without a trigonometric carrier term. | |

| f(t) =K«[m(t) + h(t) + H] + n(t) , 3)

where ' '

f(t) = resultant photo signal received at detector

m(t) = mouth movement signzﬂ

h(t) = headset noise signal

H = constant DC offset that is a function of the emitter/receiver distance to mouth.
n(t) = ambient light noise from external sources

K = LED gain

+5V

LED l

-

Vout

Y
\/‘ : N _
«—> «—> t

Mouth Mouth Mouth
Closed Opened Closed

Figure 12, Active visible ASR setup

The fastest "m(t)" signal that the photodiode detected should be around 25 Hz [3].
Conéequently the photodiode's response time of 12 ns and the LED's rise and fall times of
0.5 usec were ovérly sufficient. Also, the lowpass filter cutoff for the analog circuit will
be set at about 25 Hz. ' -

The LED's peak spectral wavelength was near-IR which is located outside the
fluorescent light spectral range and between the sun's and tungsten peak wavelength ranges
[6:116]). This helped increase the S/N by moving the modulation signal's wavelength
further away from the ambient light noise's "n(t)" wavelength bandwidth. Black hoods
made out of heat shrink were used to help eliminate ambient light noise. Unfortunately
these hoods also narrowed the field of view. This was in addition to the photodiode's

already small detection surface area (0.2 mm?2 compared to 17 mm?2 for the previously

used Advanced Optaelectronics 44PHO5M). To increase the collecting area, two SD-020-

11-11-011 matched detectors were used. One was mounted on top of the LED and the

other was mounted on the bottom of the LED. A photograph of this new setup is shown in

Figure 13 and its geometry will now be discussed. The next figure,

Figure 13. Photo of new headset setup being worn

Figure 14, is a graphical description of the geometrical pararaeters involved with the new

photo ASR system headset.

Figure 14. Geometry used for DC-coupled active photo ASR system

Where the parameters in the figure are defined below as:
wp, = width of hood opening (about 3/16 inches)
a = field of view
wpy = distance at mouth covered by field of view
dp, = length of hood (about 6/16 inches)
dp = distance from mouth to end of hood (about 3/4 inches)

dg = separation distance of detectors (about 6/16 inches)

The field of view for Figure 14 is solved below.
a = 2+tan-1(dh/2/dm) = 280 4
The distance at the mouth covered by a single detector’s field of view was:

Wm = 2xdpstan(a/2) = 0.4375 inches (5)

26

Taking into account "dg", the approximate total distance covered at the mouth for both
detectors was about 0.8 inches. There was some overlap depending dn the distanc;e. In
general, a distance be}tween 1 and 1/2 inches resulted in an optinium response with respect
to lip movement. | ' |

An additional beneﬁ; of doubling the active receiving area was an increased S/N.
Furthermore, most of the signal received came from the LED source since a majority of
the "n(t)" term was blocke_d-out.by the black hoods.

The circuit used for the DC-coupled photodiodes is shown in Figure 15. Like the
previo\us bhnto circuit, the first op-amp was used as a transimpedance-amplifier.
However, unlike the previous circuit,.it is also a low-pass filter at about S Hz. A single
pole at this frequency did dampen the "m(t)" signal but, more importantly, it helped
eliminate noisé terme. The second amplifier is a low-pass filter at about 25 Hz. In

addition, it was used to adjust the DC offset and amplify the resultant signal.

27

nnoa1d ojoyd pardnod-D¢y "g1 am3ig _ *

a 1 ko]) g] v A

nesq 4880 neo0 4650 - ,
— —) °
v Qig SOTVNY 0L0Hd .E._ A % Zys iys = ¥
’ nas C5 v o m ,
4 oo d = W e - T X =
- | 13SQV3H OL/NOYd ﬂ 13S0V3H I“.. =]
=
g 533 =
™ —
S £ . 4860 Mens — €
v / A
o P2 P2] -—
| SR SR = =

4\‘“‘ . e

An example of a DC-couplzd photo waveforr is shown in Figure 16 for thé word

“eight". This was obtained by adjusting the offset of the sig il to about -2.0 volts. The
amplitude was then adjusted for a maximum of about +2.0 volts using thé word "five" due
to its wide response. These alignments pu.t the photo signal within a fairly good portion of
the A/D's dynamic range (+/- 2.5 yolté). '_I'hé resultant signals met the photo ASR
requirements and did not affect thé audio signal. Consequently, the DC-coupled, active-
photo system was chosen to conduct:pho'tb ASR experiments for the rest of this effort.

The audio and photo signals were then digitized by a data acquisition board which was

designed and built during this project. Refer tc Appendix A for the details of this board.

Dho‘to Time Domain Plot

]
45 1
4

35 1
3

25 1
2
13
1
0.5
0 3 - v -

0 01 62 03 04 05
T Tiee (sern)

eight

Volts

06 . 07 0 08 1

Figure 16. DC-coupled photo signal for the word "eight"

29

III. Data Collection

Five people were tested: two males nver 30 years old, 2 females over 30 years old,

and one 7-year old child. Each subject spoke 12 isolated words and 5 continuous words

made up of the isolated words. A list of these are shown in Table 1.

Table 1. List of isolated and continuous words used in experiments
Isolated Words Continuous Words
Zero seven-one-one-one
one one-nine-one
two yes-eight-nine-no
three no-f,our-seven-yés
four two-eight-two-eight-two-eight
five
six
seven
eight
nine
yes
no

A word scrambling algorithm was used for the isolated words. This was necessary

to keep the test subject from getting comfortable with saying the same words in the same
sequence each time.

The continuous words were made up of isolated words. Several continuous word

sequences were tried with the objective of decreasing the audio recognition rate using no

30

sensor fusion information. The ones listed in columu two seemed to have the lowest audio

Paseavy

recognition rates.
| A total of 5 multiples was made for each isolated word and continuous.wox.'ds.
This gave a sum total of 60 isolated (12 * 5) runs and 25 continuous (5 * 5) ruris for each
person. | |
| After some alignment of the headset and adjustmeht of the eléctronics, each person
sat in front of the computer screen where, after pressing a key, either an isolated word or
continﬁous words would appear. The adult persons then had 1.0 second to say the isolated
word and 2.5 seconds to say the continuous wordé. The one c;hild (Jill) had 1.5 seconds to
say the isolated word and 3.5 seconds to say the continuous words. Aftér the allotted time
was up, the algorithm then down-loaded the data to hard disk and prompted the speaker to
hit any key to cbntinue. The next word would then pop-up at the screen and the process

repeated itself. The entire data-collection run took about 15 minutes for each person. -

K|

P

IV. Speech Processing Algorithms -

This section describes certain speech processing algorithms used in this thesis. An
overview of the steps involved with processing the templates and conducﬁng isolated and
cnntinuous recognition are list below.

¢ Both types of words (i.e., photo and audio) were located.

¢ Both types of word boundaries were verified by comparing their endpoint

locations (template and isolated sensor fusion only).

¢ Both types of words were then segmented and data was reduced.

¢ The audio words were then transformed into the frequency domain and filter-
bank processing was applied to the results,

¢ Both types of words were then normalized.

* Both types of words were then compared to all templaies to obtain a match.

e Finally, both types of words had their recognition results ccmpared to decide

which was correct (isolated and continuous sensor fusion only).

The algorithms in this section are also described in Appendix B with respect to
actual software programs and functions included in Appendix C. Refer to Appendixes B

and C for more infurm=tion related to the software details of this project.

4.1 Audio Energy Distribution: To locate audio word bcundaries, the nicrophone's
energy distribution in the time domain was used. However, unlike the photo signzl, the
audio's averagc magnitude had to first be calculated. This was accomplished through the
use of a fectangular window that summed the absolute values within a given bin size and

computed the average value. The bin size determined how many data points were

32

averaged from the audio's original voltage signal for a given window of time. The total
number of bins was dependent on the samble's time length.l sampling rate, and bin size.
For instance, if a sample's length was chosen to be 1 sccond, and the bin size wes chosen
to be 500 samples, then the resultant energy distribution would be 50 bins in length. This
is a function of the audio's sampling rate which was 25 Ksamples/sec (25000/500 = 5C).
Each bin result would then be placed in time half way between the beginning and ending
window time used to calculate that particular bin's average value. Using the Same
example, the result of the first bin would be placed ét 1/100 seconds assuming the signal
started at zero scconds. It wa§ very important to keep the time information correct since
thes?e results were used to locate audio words and eventually photo words.

|

and between 160 and 400 Hz for females [10:98]) that there can never be an optimum bin

Unfortunately pitch variation is so significant (hetween 80 and 160 Hz for males

s:zc for everyone's audio energy distribution. Consequently some experimentation with
the lbm size had to be accomplished to obtain a single bin size for all subjects tested.

Fxgures 17 and 18 are audio energy plots with the bin size, "N", equal to 250. However

Microphone Time Dom.:nn Energy Plot

1

two-eight-tyo-eight-tuo-eii"t

[IE R

- —
B

NoMe

M \ | &

e g S
————

‘_
|

|
N
A
l:-’

[

?

L

[3]
(]
L e e (T VP W G

T aver a3ed Absolute Uoltage

i

. ¢ + > * {
I 2.2 0.8 0,745 1 1.26 1.8 1.79 2 R -
: Time {zec) |

Figure 17. Unfiltered audio energy plot (N=250)

— o & s e e s

i3

‘ ™~

Microphone Time Demain Enerqu Plot

R
i o N . . .
B ey | { u..u:-—elaht—mo-emht-—tuo-mqht.]
i »} i
= o049) *\':" | ‘

' [X

5o0ar 1 (v A
- - i 4 } ’u!
l‘.*' v_.‘_‘.g; []
> oa o
% 0.3 t ! 1 J
" 0-24 + | i ’ ‘
o |
L Wigd ¢
P RLE: | ‘ ,g $J !
RS I |] o *
.'x? Ane - /} J ;i ’J |
lxﬁ o »-—-.——«._——w___—a—{ ‘ "\/ L N — ——-._r-...-.:

TG 025 05 078 1oLInLs 178 2 226 2.6

iz (zoe) .

Figure 18. Filtered audio energy plot (N=250) ‘.
Figure 18 was ﬁlfered using a five-channel smoothing algorithm which is shown oelow
[11:257]. |
y"(t) = 1/16y(t-2) + 1/4y(t-1) + 3/8y(t) + 1/4y(t+1) + 1/16y(t+2) ()]

It is quite apparent from the comparison of these two plots that the smoothing
algorithm helped eliminate false word boundaries while maintaining real word boundaries.
However, more experimentation with the bin size "N" was necessary to determine if these
results could be improved upen.

- VFigure 19 is the audio's encrgy distribution for N = 300 and Figure 20 is with N =
400. Both functions were filtered by Equation 6. From these plots, and Figure 18, it was
decided that N = 300 had the best results since the word boundaries for "two and "eight”

could easily be distinguished while simultaneously eliminating most of the false word

fiver aged Abzolute Uolt age (M=300>

e

0.54
0.42
0.42
0.36
a2

0.24
0.18
012
0.0¢

Microphorne Time Domain Energu Plot

SR N — . .
e 3 4 G 4
T Y 1 T T

two-eight~two~eight-tuo~-2ight
{

/

+
r

0 025 05 075 % .26 1.5 LD

ime (gec)

Figure 19. Filtered audio energy plot (N=300)

=400>

Aver aged Absolute Uoltage (M

Microphone Time Domain Eneray Plaot

tuo-eight~tuo-eight-tuo-eight

e 4 o
-+ L ¥

3
T

05 075 1 1,25 1.5 175 2 225
Time (sec)

5

Figure 20. Filtered audio energy plot (N=400)

35

boundaries. This result was complemented by one author's récommendation that a bin size

of 100-200 for a 10 KHz sampling rate was a suitable choice for distinguishing

between voiced and unvoiced regions [12:122]. This was comforting since the audio was,

for this project, sampled at 25 KHz. |
Finally, this bin size was verified with the other four subjects and bther continuous

words and was found to be satisfactorily with respect to highlighting word boundaries.

4.2 Locating Words: As previously mentioncd; the audio's energy distribution was used
in this effort to locate audio words. Likewise, since previous experiments using camera
recognition found that word boundaries cccurred when the mouth was opening, reversed
direction, or simply stopped, the photo's raw voltage signal as a function of time was used
to locate photo words [2:4]. _

An algorithm was developed that sensed huge changes in amplitude for the purpose
of locating both photo and audio words. This was chosen since word boundaries are
somewhat a function of changes in signal levels. The alg'orithm incorporated a gradient
search method to locate slopes of sufficient magnitude which were assumed to be word
boundaries. When completed, this algorithm would return the beginning, ending, and peak
times along with the peak value of every word found. |

Sensor fusion was incorporated to help find both types of words. Usually sensor
fusion is a multiple device system, each of which produces an output independent of the
other. The information from the different devices is then analyzed (i.e., "fused together")
to obtain a best guess [3]. In other words, sensor fusion usually occurs at the end of the
recognition process. This traditional view of sensor fusion was modified for this effort
since there was additional useful information gained from the comparison of word
boundaries. As a result, sensor fusion was used prior to the recognition process to verify

the location of photo words for both template processing and isolated word recognition, In

36

<\,
N

addition, the photo's word boundary information was the only boundary information used

for both signals during the continuous word recognition experiments using sensor fusion

information.

4.2.1 Post processing word boundary verification algorithm used for isolated
and continuous word recognition using no sensor fusion infdrmation: The results
returned by the gradient search algorithm for both the isolated and continuous cases was
not processed any further and was the only segmentation data used to conduct word

recognition runs. No sensor fusion processing of any kind was programmed to enhance

the results.

4.2.2 Pdst processing word boundary verification algorithm used for template

processing and isolated word recognition using sensor fusion information: Audio
-information was not only used to locate audio words, it was also exploited to belp verify
isolated photo word boundaries for both template and isolated word processing. This form
of sensor fusion was necessary since the human mouth may not be in the fully closed
position pribr to speech. Incorporating sensor fusion techniques during template
processing was justifiable since it is very important to obtain the best word template
possible. The microphone's signal was ideal to use for this purpose since the local
environment was fairly quiet. As a consequence, most isolated audio words were not hard -
to locate. However, in harsher environments (e.g., airplane cockpits), this methodology
may not be as successful.

, After the gradient search algorithm returned its results, another algodthm would
then process the word(s) boundary information to determine which word(s) was the correct

word. This algorithm, whose steps are outlined below, used information from both signals

" (i.e., sensor fusion).

37

1. All audio and photo peaks were compared and matched. A match occurred
when the distance between two peaks was less than 0.2 seconds. If more than one match
occurred, the match with the minimum distance was chosen.

2. The audio word with the largest peak value was located and its corresponding
word boundaries were initially selected as the correct audid word. |

3. The corresponding photo word matched in Step 1 to the audio word found in
step 2 was then selected as the correct photo word.

4. If other audio peaks were within +/- 0.25 seconds of the audio word‘selected in
step 2 then their endpoints were used as the new endpoints of the audio word selected in
step 2.

5. The photo word's endpoints selected in step 3 was correspondingly adjusted to
any new words found in step 4 that match up in step 1. |

6. The photo boundaries are verified by comparing them to the boundaries of the
aﬁdio word. If the photo's beginning‘ endpoint was less than 0.1 seconds from the
corresponding matched audio's beginning endpoint, then the photo's beginning endpoint
was made equal to the audio beginning endpoint boundary minus 0.05 seconds. Likewise,
if the photo's ending endpoint was greater than 0.1 seconds from the corresponding
matched audio's ending endpoint, then the photo's ending endpoint was made equal to the
audio ending endpoint plus 0.05 seconds. Figure 21 will now be used as an example of

this entire process.

38

Dhoto Time Domain Plot

three

Volts
[
)

it

0 v v v v ' v r
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tine (se0

Hicrophone Time Domain Enerqu Plut

0.9
08l
.72
0
0.54
046
0.3¢
(%7
o18
003

three

N=500>

Aver aged Absolute Uol tage <

0 v ' ' v v — r v v
0 02 0.4 0.6 0.8 1 1.2 1.4 1.8 1.8 2
Time (s00)

Figure 21. Example audio energy distribution being used to verify photo word

The gradient-search algorithms would have returned the following approximate

information in Table 1 based on information given in Figure 21.

39

Table 2. Example of initial word segmentation results
| Word number | Word Beginning | Word En‘ding Peak Time | Peak Value
(sec) (sec) (sec) (amplitude)
Photo 1 0.22 0.53 0.4 2.0
Photo 2 0.53 0.75 0.6 4.0
__Audio 1 04 0.7 | 0.6 0.84
Audio 2 0.9 0.98 094 0.16
Audio 3 0.98 | 1.18 1.05 0.13

Next, the results of each step the word verification algorithm will be listea.

1. Photo 2 would be matched to Audio 1. This would have been the only match
since all other photo-to-audio peak distances are greater than 0.2 seconds

2. Since it has the maximum peak amplitude (0.84), Audio 1 would be.selected as
the initial audio word. Its endpoints (0.4 and 0.7 seconds) would be selected as the correct
word boundaries.

3. Photo 2, which was matched in step 1 to Audio 1, would then be selected as the
initial photo word. Its endpoints (0.53 and 0.75 seconds) would be selected as the correct
word boundaries.

4. No other audio word peak is within +/- 0.25 seconds of Audio 1's peak time (0.6
seconds). If, for example Audio 2's peak time was within 0.6 to 0.85 seconds then its
ending time would have been selgcted as the new ending time for Audio 1.

5. Since there was no audio endpoint adjustment made in step 4, there will be no
photo endpoint adjustment either.

6. Photo 2's endpoints are now compared to Audio 2's endpoints. Since Photo 2's
beginning endpoint is greater than Audio's beginning endpoint minus 0.1 seconds (i.e., 0.3

seconds), no photo beginning endpoint adjustment is required. Likewise, since Photo 2's

e

ending endpoint is less than Audio's ending endpoint plus 0.1 seconds (i.e., 0.8 seconds),

no photo ending endpoint adjustment is required.

The result of the'post-processing algorithm would have chosen Photo 2 and Audio 1 as the

correct words.

4.2.3 Post pfocessing word boundary verification algorithms used for
continuous word recognition using sensor fusion information: Basically there was no
post—proc‘eésing conducted on the gradient searc)l results for continuous word reé‘oghition
using sensor fusion information. Put simply, the photo segmentation results returned from
the gradient search algorithm was the only word boundary information used for both audio
and photo signals in conducting continuous word recognition. This clearly discarded word
boundary information from the microphone signal and information obtained from the .time
relat.ipnship of the photo signal with respect to the audio signal as depicted in Figure 22.
Notice that the first two photo humps are normal énd can be directly applied in finding the
first two audio words "2-8.” However, the second two photo humps are "8s" only. Now
observe the position of thesg two photo hﬁmps with réépect to the corresponding audio
humps - the photo humps lag the aqdio numps. This time/phase relationship, not used in

th*s thesis, can be used to "ferret-out” hidden microphone words.

41

Photo Time Domain Plot
tuo-eight-tuo-ei ght-tuo-eight

Volts

D v v M L v m u T

] 0.3 0.8 0.9 L2 18 1.8 21 2.4 2.7 3
‘ Tive (300

Hicrophone Time Domain Energy Plot
tuo-eight-two-eight- tuo-eight

0.3
05 1
0.4
0.3%
043
0.26 1
0.2
015 1
01
0.05 1

0 ' T T v T v — - r
0 0.3 a6 0.3 1.2 1.5 1.8 2.1 2.1 2.7 3
. Tine (g0C)

ge < N=300)

Averaged Absolute Vol ta

Figure 22. Example of comparing the phase of the photo and audio signals
4.3 Word Segmentation: After the word was found and processed, another algorithm

would then strip the word(s) out of the speech time sample given the beginning and ending

word boundary times.

42

\

i

N AN Y
w0\

_ 4.3.1 Photo segmentation post processing: Since the photo word was sampled at

- such a high rate (2.5 Ksamples/sec), there were about‘ 2500 float values obtained for every
second of photo data. This was 500 times the Nyquist rate of 50 sam'ples/sec. Because of
this, it was decided that the number of samples used would be decreased from 2500 to
around 100 for a one second sample.. This saved processing time while keeping the
integvrity of the signal intact since the resultant photo word was, in effect, sampled at 100
samples/sec. This was still twice the Nyquist rate and sufficient to avoid aliasing. The last

step was to normalize the word(s) with respect to its energy content.

4.3.2 Audio scgmentation post processing: The stripped-out audio signal was
transformed into the frequency domain using a DFT. Filter banks were then used to |
process the resultant signal in order to reduce computation time. Several different filter

"bank processing schemes were tried for the purpose of increasing audio recognition rates.
The best results were achieved using the current algorithm which is: between 0 and 2
KHz, approximately 167 12 Hz bandwidth filter banks were used and for the 2 KHz to 4
KHz interval, approximafely'33 60 Hz bandwidth filter banks were used. The log of the
signal's average amplitude was then computed and the result was placed in one of 200

_bins. Lastly, the logarithmic filter bank résults wgrqno;rpgrl’iwchwitll respect to their

energy content.

4.4 Template Processing: Because the mouth moved at a maximum rate of about 25 Hz,
. it was decided that the photo signals in the time domain would be used‘ as the main feature

to perform photo ASR. This decision was based on the fact that in the frequency domain,
~ there is very little photo information below 25 Hz that can be utilized to perform ASR
experiments. In fact, some experimentation has revealed that most of the photo energy

content for most words lies below about 10 Hz of which an example is shown in Figure

43

23. As a result, photo template processing and speech recognition was

1.5

35

28

Uolts

1.8

0.5

Photo Time Domain Plot

one

0.1

0.2

0.3

d4 0.% ds
Tine (se0

0.7 0.8 0.8 1

1730
1%
1384
1211
hic]

Anpl Ltude

613
316
173

Phota Detector Frequency Domain Plot

MHJ\J—F\M{m

Freq res. = 0.60386 Hz
Start time = 0 sec
Stop tine = | sec

3

12 13 18
Froquency (H2)

21 p] z 30

Figure 23. Example of photo frequency information cuntent for the word "one"

accomplished in the time domain. However, since the cutoff for audio was 5 KHz, there

was much more spectrum information available in the audio frequency domain as

compared to the photo frequency domain. This can be verified by comparing the audio’s

frequency spectrum of Figure 24 to the photo's frequency spectrum in Figure 23 for the

same word and speaker. Consequently the frequency domain was chosen for the audio

signal to perform template processing and eventually speech recognition.

tticrophone Time Oomain Plot

28
"
1.5
1
65
0 Whahuy
-0.5
-1
18]

Volts

25 ' . e v ' r . r
0 0.1 0.2 0.3 0.4 0.5 X3 [1 ¥4 0.8 0.9 1
Tive (se0)
Microphone Frequency Bownain Plot
freq res. = 0.76257 Hz

3234 Start gine = 0 gec
Stop tine = 1 sec

0 300 &0 900 1200 1900 1800 2100 2400 2700 3000
Frequancy (K2

Figure 24. Example of audio frequency content for the word "one"
Two type of templates were created: (1) Speaker-dependent and (2) Speaker-

independent templates. A Dynamic Time Warping (DTW) function was used to select

which one out of the five word multiples, for each word, for each person was to become J

45 |

the speaker-dependent template. This algorithm compressed or stretched a waveform with

respect to a reference template and returned the cost to obtain the optimum path. Each
multiple of a word was, in turn, a reference template that was compared to the other four
word multiples. The reference'iemplate with the overall lowest cost as compzired to the
other four word multiples became the template for that particular word.

The DTW algorithm was also used to procéss speaker-independent templates. The
results of the speaker-dependent templates were used to decide which template would
become the "speaker-independent” template. Each speaker-dependent template for each
isolated word, for each person was, in fum, a reference tempiate that was compared to
anoiher person's speakér—dependent template. The reference template with the overall
lowest cost as compared to the other four speaker-dependent templates became the
"Speaker-independent” template for that particular word. Examples of an actual photo and
audio templates can be seen in Figures 25 and 26 respectively. Note that all templates

were extracted from "isolated" words. No templates were derived from continuous speech

in this effort.

Photo Time Donain Template Plot

%2
618

014
0.14 /

(18 ¥4

five

Nomalized Uoltage <unitless>
=]
8

0 107 204 3l 428 85 642 743 @6 %3 W

Tine Lons

Figure 25. Example of a photo template for the word "five"

Hicrophone Frequency Dowain Tewplate Plot

o2
ote
z ol
§ 0.14
e
0l
S oo
S a0

Eo.oq

Z 02

{five

0 189 338 537 736 S5 194 1383 1532 4781 IR
. Frequency Dins _

Figure 26. Example of an audio template for the word "five”

‘l
|

4.5 Speech Recognition: : ‘
4.5.1 Non-sensor fusion word recognition: Each perscn's isolated fland

continuous words from Table 1 were compared to that particular person's sp«laker—

dependent template and the speaker-independent template. The photo and mrdio templates

with the overall lowest DTW scores were chosen as the recognized word. ;

4.5.2 Sensor fusion word recognition: ‘This part of the fusion process was
identical to the standard definition of sensor fusion, *Twe different systems, each of which
produées an output word guess independent of each other, are fused together to obtain a
best guess.” The photo and audio templates with the overall lowest DTW scores W}:rc

compared using the sensor fusion decision theory described below to decide which word

was the best guess.

47

¢ The photo template was selected if ihe audio DTW cost was greater than 0. 17 and
the photo DTW cost was less than 0.005. |
. The photo template was selected if the audio DTW cost was greater than 0.6 or
the photo DTW cost was less than 0.0001.

» Otherwise the microphone template was chosen.,

These were arrived at empirically with the objective of achieving as high a recognition rate

as possible.

438

V. Test Results

The speaker-dependent experiments used each person's "speaker-dependent”
téfnplate (i.e., "0" through "9" and "yes" and "no") to éompare that particular person's
utterance for the words in Table 1. There were five utterances of each word type so the

-results are a compilation of S utterances of 12 isolated words and 5 utterances of 5
continuous words. | A

The speaker-independent experiments used the "speaker-independent” template
(i.e., "0" through "9" and "yes" and "no") to compare that particular person’é utterance for
the words in Table 1. Again, there were five utterances of each word type so the results
for the speaker-independent experiments are a cOmpilatibn of 5 utterances of 12 isolated
words and § utterances of 5 continuous words. A

The results for six experiments are shown in Table 3 and a discussion of each result

will follow.

49

Table 3. ASR results

Experiment

Pat

Janet

Dcn

Mary

Jill

| ————

1. Isolated photo word, speaker-
dependent recognition using no-sensor
fusion information.

62%

55%

52%

35%

12%

1. Isolated audio word, speaker-
dependent recognition using no-sensor
fusion information.

2. Isolated photo word, speaker-
independent recognition using no-sensor
fusion information.

87%

88%

22%

42%

87%

15%

88%

53%

12%

7%

2. Isolated audio word, speaker-
independent recognition using no-sensor
fusion information. N

33%

37%

40%

40%

17%

3. Isolated word, speaker-dependent
recognition using sensor fusion
information.
——— —

90%

92%

93%

63%

arem—
s

4. Isolated word, speaker-independent _
recognition using sensor fusinn

38%

information.
5. Continuous photo word, speaker-

dependent recognition using no-sensor
fusion information.

10%

42%

20%

42%

20%

17%

5%

5. Continuous audio word, speaker-

dependent recognition using no-sensor
fusion information.

| ——————— ———

42%

27%

40%

30%

6. Continuous word, speaker-dependent
recognition using sensor fusion
information.

40%

29%

32%

30%

5.1 Isolated word, speaker-dependent recognition using no sensor fusion

information: As expected the audio signal performed better than the photo signal.

However 95% to 100% audio isolated word recognition rates are achievable today for

many ASR systems. So it was disappointing that the audio did not perform better. This

was especially important for the continuous word recognition experiments using sensor

fusion where the photo information was used to find the audio words. This is useless if

50 -

addio‘s recogdiiion algorithm is not very good. It was interesting to note that the word
"one" did poorly for all subjects.

The worst audio results, "Jill", were due to the inherent design of the speech
processing algorithms. Recall that the gradient-search algorithm searched for significant
changes in amplitude to decide where word boundaries were located. If it encountered
more than one isolated word then the algorithm would return multiple words even though
there was ohly one real word. Unfortunately QUite a few of Jill's isolated audio word
signals contained one or more small "humps" after the actual word was spoken. These are

natural breath sounds and an example can be seen in Figure 27.

51

C . . B e . e e,
. . Al

Photo Time Domain Plot

three

35 1

235

Uolts

L3

a3 s

e

o 0.2 0.4 0.6 0.

8 1 1:2 1:4 1:6 1.8 2
Tire (se0 -

Hicrophone Time Domain Energy Plot

0.9
081
a7z
0.63 1
0.54
.46
0.3¢
027
618
0.03

0 v r . , v . . x -
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Tine (500

three

Averaged Absolute Voltage (N=B00>

Figure 27. Example of Jill's audio word "three” with breath noise

The results for the photo signal recognition were good. The second worst photo
results, "Mary", were due to the fact that this person simply did not keep her mouth from
opening or moving prior to saying the actual word. An example of this can be seen in

Figure 28. This is quite natural but played havoc with the algorithm trying to find the

52

Photo Time Domain Plot

one

Volts -
)
o

0 — — ' r ' v r Y v
0 0.1 0.2 0.3 1K] . 0.9 0.8 0.7 0.8 0.9 1
Tive (sec) ‘

Figure 28. Example of "Mary" not keeping her mouth shut prior to speech

words.
"Jill" a'so had the worst photo results. There were problems with the headset and

offset adjustmcnts during data recording. This caused some sighals to hit the rails and
become basically useless for speech recognition. New data should have been recorded for

Jill which would have certainly improved her photo results.

5.2 Isolated, speaker-independent recognition using no sensor fusion information:
~ The recognition rates for hoth the audio and photo information is fairly poor. This is
understandable for the pl oto signal since there were clear differences between the test

subjects as shown in Figure 29. HJWéVer, the audio should have performed better.

53

Photo Time Domain Plot

45 nine

35

25

Volts

1.8

0.6

0 v . v . : ' — .
0 1 0.2 0.3 6t 05 0.6 0.7 0.8 0.8 1

; Tine (sed)

]

. __Photo Time Domain Plot

4.8 nine

23 i

YA

Volts
~

l.a r

0.6

0 v - r ' r v v r r
0 I 0.2 03 0.4 . 0.9 0.6 0.7 0.8 09 1
Time (sec)

Figure 29. Example of photo differences between subjects

5.3 Isolated worc, speaker-dependent recognition using sensor fusion information:
One has to compare these results with the microphone results for experiment 1. This
comparison clearly shows that the objective of this thesis has been met - "Using additional
information obtained from IR or visible detectors does increase the recognition rate of an
audio ASR system.” About 10% of the words were chosen from the photo results. The

- rest of its success is due to using the microphone to help verify photo words. These results

54

could possibly be improved. As we saw earlier in Figure 27, some subjects had breath

noise. In these cases it might have been better to use the photo words to locate the word

boundaries of both signals.

5.4 Isolated word, speakcr-independent recognition using sensor fusion information:
One has to compare these results with the microphone results for experiment 2. Again

 these results clearly show that using additional photo information can increase recognition

rates.

' 5.5 Continuous word, speaker-dependent recognition using no sensor fusion
information: The photo ASR system performed fajriy poor; The main problem in using
photo words in the continuos domain is ;hat the words are usually merged togeiher. Using
templates that were derived from isolated words correlated to continuous words only if
there was a clear separation between the words. Word separation depended on the position
of the words with respect to each other. '

The microphone results were not much better. Most of the problem was finding |
the words. This is understandable since it is the crux of continuos ASR. However, the

other main problem was that the recognition algorithm was performing so poorly.

5.6 Continuous word, speaker-dependent recognition using sensor fusion
information: One has to compare these results with the microphone results for
experiment 5. The results are not that terrible considering the fact that only photo word
boundaries were used to locate words in both the photo and microphone continuous
signals. Note that most of the words were picked from the microphone results. Put
simply, isolated photo templates perform poorly when used to perform continuous word

ASR. This was observed in experiment 5 where the photo percentage rates were very low.

55

| Note that there are two experiments missing: "5.7 Continuous word, speaker-
independent recognition using no sensor fusion information" and "5.8 Continuous word,
speaker-independent recognition using sencor fusion information." Since the results for
experiments 5.5 and 5.6 were so poor, these last two experiments 'using cross-speaker
recognition would be worse and would probably be useless. As a result, they were

eliminated as experiments.

56

VL Conclusiohs and Reconimendations

~ This thesis has clearly proven that using additional information ffom photo

detectors can increase recognition rates. These results are significant considering no

optical focusing elements were used for the detectors. Unfdrtunatély one has to put a time

limit on such R&D efforts and a lot of my time was speht trying to come up with good
photo signals and sometimes microphoné éignals, and fighting withAsoftware bugs. This
work is by no means finished. Additional experimentation is required for the continuous
sensor-fusion case to clearly show th.. e resuits will be superior to using microbhone
ASR alone. Iam fully confident that this can be‘done. What I have chosen to do for this
thesis was the simplest continuous sensor-fusion case ahd is not the optimum case. There
is idditional information that can be gained through the comparison of both signals as we
saw in Figure 22. I chose to discard this extra information to make the programming

easier and the time to finish shorter,

My recommendations for future microphone/photo efforts are listed below.

- Use the current sensor fusion algorithm for isolated ASR. As we saw, using the
microphone signal to verify photo words and then comparing the recognition results of

each signal can result in a superior isolated ASR system.

- For the continuous ASR system, some investigation and experimentation should
be accomplished to obtain more intormation on the location of the microphone words. In
this case, use the photo signal to mainiy help locate the microphone words. This can be
accomplished easily when there are dips and pauses in the photo sig'nal. Something that 1
did not do was to use the magnitudes of either signal (photo or microphone) to determine

if a valid word boundary point was found. In addition, I recommend using the time/phase

57

o s gt A Ky, Tt PR 2 i S

relationship information of the photo words with respect to the microphone words to help
locate microphone words (see Figure 22). I recommend not using the photo recognition
results. Unless there is a clear separation (i.e., a pause) between words, photo continuous

ASR performs poorly. The results are probably not worth the additional processing time.

- A better headset should be designed that is lighter and more ergonomic. Modern
microphone headsets use lightweight plastics to achieve these requirements. However,
this problem could naturally go away for some pilots who have their helmets specially

fitted. Photodiodes and a LED could then be easily mounted into the helmet.

- An optical attachment to the photo detector such as a Fre_shel lens or a miniature
convex thin lens should be experimented with. No adjustment of the photo detector should
be required after the headset (or helmet) is worn. To decrease ambient light noise, a
spatial filter should be uséd in addition to the Fresnel lens or miniature thin lenses.

However, this may not be required since some lenses are also filters.

- The "h(t)" headset movement noise term needs to be eliminated. Maybe the
headset improvements suggested above will help decrease this noise. If not, addiional
signal processing (hardware and/or software) could be used to trs' and eliminate "h(t)".
One way would be to use the second photodiode to subtract out t\ieadset movement. The

setup would use the one detector to measure "h(t)" only and then Zl;l:tract it out from the

other detector's signal in the analog circuit by using a differential amplifier.
- Using filter banks for the audio ASR process is probably why my audio
recognition rates were so low. Irecommend adding other recogrition schemes (e.g., zero-

crossings, formants, etc.) which are probably better that the single one I have chosen for

58

- reflected photons.

the reicrophone.

- - Trecommend that if the CW/AM system is used, try optical fibers to send the

light to a focusing lens. Then use another fiber with another focusing lens to receive the

- I used the microphone signal to help verify the photo signal for both template
processing and ASR using sensor fusion. If these same experiments were performed under
real-world conditions such as an aircraft cockpit, the current algorithms may not operate

properly. Consequently one may in this case rely more heavily on the photo signal to help

locate both photo and microphone words.

- IR ASR certainly deserves some additional attention. The ideal application may

be continuous ASR where the location of the IR humps could be used mainly to h:lp

~ locate the audio words.

- An additional area that photo speech technology may be applied to is speech

therapy. This idea came to me when I noticed that I was saying the photo word "zero"

| incorrectly for which I promptly corrected. However it was harder for me to tell that T was

slurring the word "zero" using only its audio energy distribution.

- Using a PC with MS-DOS has its shortcomings. I had to implement dynamic
memory allocation algorithms to circumvent memory limitations. The worst was the
DTW algorithm. Using conventional memory allowed only for a maximum of a 320 X
320 float element array. Fortunately about a 100 X 100 size array was only required for

this thesis. I suggest using either a mainframe computer or the newest version of

59

.N

/

Microsoft C++ for the PC which allows access to extended memory.

- Lastly, here are some recommendations for the A/D board. Try using a First-In-
First-Out (FIFD) chip in the digital board to take some burden ¢ ff of the PC interface
circuitry. Also, try using one DMA channel to transfer the photo signal and the other to
transfer the microphone signal. This will automatically decouple the two signals if using

one A/D chip. However, this method will transfer data at a slower rate but should suffice

if the sampling rates are low.

Appendix A. Data Acquisition Board Design

A system block diagram of the digital data acquisition board can be scen in Figure

30. This was a two-channel board that plugged into a standard IBM PC. Onc channel was

PC BUS

TIMING & dpeamensssesanvasss—p

CONTROL

ANALOGT

MUTIPLEXER ' | DATA
ANALOG?2 LATCHES

Figure 30, Block diagram of A/D board

used for the A/D photo signal and the other for the mfcmphone signal. The signals were
timc-muhiplgxcd in order fn share the same 12-bit A/D chip. After conversion, the lower
byte and upper nibble of each signal were temporarily stored in latches awaiting o
acknowledgment from the computer. The most complex section ofv the block diagf_am is
the timing and control. 1t directed to the multiplexer when it was time to switch input
signals and initiate A/D conversions. 1t also had to handshake with the PC's |
micrdprocessm and DMA (Direct Memory Access) chip(s) to download digitized data to
the hard drive. |

The microphone signal was sampled at 25 KHz and the photo signal at 2.5 KHy,

Therefore, the current lowpass filters (§ KHz for the microphone and 25 Hz for the photo)

were adequate to avoid aliasing,

6l

The design specifications called for usirig 8-bit data transfers for the case where
this board was to be used in a XT PC. This definitely slowed the data transfer rate as
compared to a 16-bit bus. But the advantage was that this board would be compatible in
any standard PC. lncidcntally this board started in a XT PC and ended up béing used ina
386 PC. | "

Due to the audio's high sampling frequency (25 KHz), DMA chdnncls were used to
transfer the data from the digital board onto the computer's hard drive. This was faster
than programm.ed /O but unfnrtundtcly the interface circuitry was more complex.

The interface circuitry that performed the handshaking with the 8237-5 DMA
controller chip is shown in Figure 31, This is onc of three sheets that made up the A/D
board. This circuit was controlled by both the DMA chip and computer software. Two
DMA channels (1 and 3) were used to increase data transfer rates to computer memory.
When data was ready to be transferred (i.e., it's been digitized), a DRQ (direct memory
request) line was raised from the PC board. The DMA controller then prioritized the PC
board's request and eventually responded by lowering the corresponding DACK (direct
memory access acknowledge) line. The PC board then used this signal to reset the DRQ
line back low.

When the IOR (1O read) line went low, the address on the bus was valid and the
PC board responded by putting its data on the bus. Eventually the DMA controller
reached its preprogrammed number of transfer cycles and raised the T/C (terminal count)
line. The A/D board sensed this condition and responded by raising the IRQ3 line which
told the software when data in memory was ready to be downloaded to the hard drive.
When the data transfer was complete, the software would then send the "RESET”
command to the A/D board which released the IRQ3 line and stanied the whole process

over again,

62

(€ 3O 1 199ys) uresgerp }NID [ONU0/20RUANI 3d U 1€ 2031

Q I J 1 2] . 1

<

[T $SET— 1¥S TUgoUuyiasos] -

is

LU

L

]

63

The data acquisition process just described is outlined on the next page for a typical

DMA sequence [13:114,157-159].

1. The data acquisition board sets either the DRQ! or DRQ3 signals high when

data is ready to be sent. Two DMA channels were used to spced up data transfers.

v 2. When ready, the 8237-5 chip responds to the request by setting DACK1 or
DACK3 low. The board puts the data onto the data bus and drops the DRQI or DRQ3

lines.

3. The DMA chip then puts the memory location onto the address bus and reads

the data from the board to memory.

4. At the end of a programmed number of bytes transferred, the DMA controller

raises the T/C line.

5. The board ANDS these with the appropriate DACK line and raises the IRQ3.

6. The IRQ3 interrupt is then detected by the computer software tor the purpose of
reprogramming the DMA controller and sending a "RESET" /O address to the data
acquisition A/D board.

7. The board receives the "RESET" command and lowers the IRQ?3 line.

8. Steps 1 through 7 are repeated under software direction.

The A/D board's timing diagram is shown in Figure 32. The timing circuit is o

shown in Figure 33 and the data processing circuit is shown in Figure 34.

' .67 us ' '
1.5 MHz ::—L—_’ , ,
CLK [U I I

50 KH:

-
=

s L

2.5KHz

SarD SN Lf" L
8.67 us .

sy [. ! I ! I N

Mux. _'—."'L ANA!-.O'GZ l___ANALOGI oo ‘ L

gg.gg) O— o O— O— - Q_

Figure 32. Timing diagram for A/D board

The heart of the timing is a 1.5 MHz clock oscillator which was down converted to
three main frequencies: 50 KHz, 25 KHz, and 2.5 KHz. The 25 KHz and 2.5 KHz were
the sampling frequencies and the 50 KHz frequency was used to both convert photo

signals (ANALOG?) and latch previously converted microphone data (ANALOG!) out to
74374 registers.

65

(€ JO 7 199ys) weiSerp 1ndI1d [oNuod/3utwp preoq /v “gg indig

a 1 J i 2] 1 v
BN o S NG A i
\ TN]
m.._ _m
myury| ony
» | LNOXE) TOHINGO/ONINL CHB QY ony N
= %m
£ = €
- O3
: ==c=="1FE-
"
1 (s 100) w8 34
. 8
»
FAS zovL
$/\¢ vers
z Jun_ﬂ: z
s =—c)
’
Veen v eus
ot
1 | 2 004 |
50 X0
Y

(€ JO €129ys) wreadeip NI wcmmmoooa reudis preog Q/V tE n3y

) I o) | SR) 1

<

LA ULLL

TR R

*+
HER -«
5
™~
ﬁ
{l
|

67

X

D]
|

-

: [{
&l
i
1]
Il

-
-
=

i
I
Il

H
E IJ“
st {({

i

\

4l

3,3,

The 12-bit A/D chip, a MAX167, starts a conversion when both CS and RD went
low. The BUSY signal then went low during the conversion time (about 8.67 usec) and
previously converted data appeared at the chip's output (D1/D12) [14]. No.smal operation
was when the 2.5 KHz pulse was not present. The microphone signal was then
continuously converted and read out to two latches at 25 KHz. The ldwer byte (D7/D0)
was stored in one latch and the upper nibble (D1 1/D8) was stored in the other latch. This
continues until the next 2.5 KHz pulse appeared. At this time the multiplexer would then
switch inputs and the photo signal was converted while the last microphone conversion
bits were read out to latches. This occurred after the 2.5 KHz pulse and at the next 50
KHz pulse. The end result was that for every digitized photo word that is sent, 10
microphone words were sent within the same period.

Al three circuit diagrams were built on a single 16-bit prototype card from JDR
Microdevices. The card came with built-in /O addressing alrewdy decoded which was
convenient since the addresses 300, 301, and 302 were used to initialize the PC board,
activate the timing circuit, and reset the IRQ3 interrupt resnectivély. A 74139 chip can be
seen decoding these addresses in Figure 33. As shown in the schematic, the "ON"
command was used to start the timing after the board was initialized using the "INIT"
command. The "RESET" command, which was generated but not used in Figure 34, was

used in Figure 31 to reset the hard ihterrupt.

68

/ R

Appendix B. Software Design

The comj «er and language used for this project was Borland C++ for a PC. A

system block diagram of the software is shown in Figure 35. All software source code is

included in Appendix C.
Speech.c
v v + 3
Acq_dat.c Pit spe.c Template.c Spch_rec.c
- * — i
DMA.c " Plot.c Proc_spc.c
: [v |
FFT.c Conv_dat.c , Warp.c
j

Figure 35. Software program block diagram

As can be seen in the block diagram, there are four main sub-programs: Acg_dat.c,
Plot_spch.c, T:mplater.c, and Spch_rec.c. These were controlled by the window-driven
"Speech.c” module which received user-inputted information. The four main sub-

programs will now be discussed.

Data Acquisition: To conduct DMA transfers, the 8237-5 chip had to be re-programmed

before the board was allowed to transfer data. The chosen modes of operation were as

follows:

- Read to memory operations only

- Single byte transfers

69

The memory address for start of transfer and the byte count was also programmed into the

DMA chip.

The data acquisition ;oftwaxc programs are "Acq_dat.c" and "DMA.c". These
performed all of the programming, handshaking, and data transfers with fhe 8237-5 DMA
controller and digital board. "Acq_dat.c” was the main program that controlled the data
transfers. It used misceilaneous DMA routines contained in "DMA.c" most of which were
found in an excelleni article on DMA interface hardware and software design [15].

When called, "Acq_dat.c” initialized énd activated the acquisition board through
I/O addressing. It then created two buffers using dynamic memory allocation to conserve
memory. One buffer was used to record the data through DMA transfers while the other,
already filled buffer was being written to disk. Even though these operations appeared to
be accomplished in parallel, they weren't. The DMA chip still had to steal ciock cycles
from the CPU to download data to disk.

As mentioned earlier in the digital board design, an interrupt (IRQ3) was used to
tell the computer software when a DMA transfer is completed. The software then
switched buffers and, using the "RESET" command, reset the board to continue the data
acquisition.

The format of the received data was such that one block of data contained 10
integer values of microphone data and | integer value of photo data. The number of
integer values transferred depended on the time length of the data to be converted using
the A/D acquisition board. For example, if on‘e second of data was to be recorded then this
equated to (1 sec)*(25000 samples/sec) which is equal to 25000 integer values of
microphone data and (1 sec)*(2500 samples/sec) which is equal to 2500 integer values of
photo data. Both signals were then stored together in one binary file. When required, the
data was read back by the "conv_dat.c” program, demultiplexed, and converted to float

values using the A/D 12-bit transfer function.

70

Data Plots: "Pli_spc.c" plotted both time and frequency data for both signals. To plot

amplitude versus frequency, a FFT was performed on the time information through the use
of "FFT.c". Frequency resolution was a function of the available memory aﬁd the time

length of the signal. To setup the grziph and p'lot data, the program "Plot.c" wzis used. The
primary reasons for the data plotting progrém was to observe the results of algorithms uséd

and record results for this report.

Template Processing: "Template.c" created the templates for both signals. The first step
before template processing was to loéate the isolated words. Word boundaries and |
additional information (e.g., peak location, beginning time, ending time, etc.:) about the
signals were returned by the "find_words()" routine which was called by the
"sensor_fusion_segmentor()'f routine. The "find_words()" routine, which is in the
"Proc_spc.c” program, located both photo and microphone words. It sensed huge changes
in amplitude to find the words since the boundaries were somewhat a function of changes
in signal levels. It incorporated a gradient search method to locate slopes of sufficieht
magnitude which were assumed to be word boundaries. |

An algorithm called "sensor_fusion_segmentor()" was programmed to decide
where the words were located using the results of the find_words() routine. The
sensor_fusion_segmentor() routine's sole purpose was to verify and correct if necessary the
beginning and ending word boundaries for a given speech signal. The audio signal was
used in this routine to verify the photo’s boundaries.)

After the word boundaries were verified, two routines, "process_photo_data()" and
"process_mic_data()," were then used to strip the word out of the speech time sample.
They are located in the "Proc_spc.c” program; Their sble purpose was to convert the
signal for speech processing and then return only the data within the beginning and ending

times sent to them. The audic signal was transformed into the frequency domain in the

71

"process_mic_data()" routine. Both the photo and audio words were then filtered using a

smoothing algorithm called "filter()" which is located in the "Proc_spc.c" program
[11:257]. This algorithm low-pass filtered the energy distribution to remove unwanted
spikes.

The words are normalized with respect to their energy content after being
processed by either the "process_mic_data()" or the "process_pho_data()" routines. The
normalization routine is called "normalize()" and i< located in the Proc_spc.c program.

A Dynamic Time Warping (DTW) function was then used in the "Template.c”
program to select which word multiple out of five word multiples was to become the word
template.' The DTW algorithm used extracted from a text book on speech recognition
[10:379-382). Thc author menticned that this was a bare-bones version of the algorithm.
So some modifications were necessary after converting the routine from FORTRAN to
C++.

The DTW's original path width was hard-wired to +/- seven to limit the amount of
warping that was allowed. To add some flexibility for optimization, the constant path
width was changed to a variable path width for the algorithm.

Another path constraint during the warping process was to allow only one step in
either the vertical, diagonal, or horizontal directions. This was changed from one step to a
variable number of steps. However, one had to use this change with caution. Too many
steps in either the horizontal or vertical directions wili result in a distorted waveform that
is either stretched or compressed out of proportion.

The DTW algorithm's path width was originally calculated from a straight line that
went from (1,1) to (m,n) as shown in Figure 36a. This worked fine if the m =n. When
this condition was not met, the results were disastrous as can be seen in Figure 36b.
Consequently the algorithm was modified to have a variable slope and offset line to

calculate path widths from.

72

) =
n=m (m,n)
L] it
. . —] =i
j=ixg, A
(a.) p o rI / 1
/,"’.. r . I / \
j=i-r
(1 ' 1 m > i
‘ m>n . -
] | {These hit raj ‘
Ni-—mrermm e X = =L (mrn)
- P o
(Actual line). '
b. |
(b.) e R (What really want)
(1.1) ' n

Figure 36. (a.) DTW algorithm path with m=n (b.) DTW alébr‘ithm path with m>n

i
|

Speech Recognition: The last main program, "Spch_rec.c”, performed both isolated and
continuous speech recognition. This program used the same operations as "Template.c”
b but for isolated or continuous word versus templates. The steps for isolated and
continuous word recognition using "no" sensor fusion are listed below:
M ¢ The word(s) was found using the "find_words()" routine.

¢ The word(s) was then stripped out and processed using the "process_photo()" and

. - | process_mic()" routines.

73

-

oo I P v PR o o, - \)

o ; : . e B PRI . ,‘_. P R A A BT N S RSy I 13 - . . S
S i ke Py * .

¢ The word(s) was then normalized with respect to its energy content using the

"normalize()" routine.

¢ The template(s) with the overall Inwest DTW score was chosen as the recognized

word.

The steps for isolated and continuous word recognition using sensor fusion are listed

below:

e The photo and audio words were found using the "sensor_fusicn_segmentor()"
routine. -

¢ The photo and audio words were then stripped out and processed using the
"process_photo()" and process_mic()" routines.

¢ The photo and audio words were then normalized with respect to the.ir energy
content using the "normalize()" routine. |

e The photo and audio templates with the overall lowest DTW scores were

compared using the decision theory previously described above for sensor fusion.

74

“Appendix C. Computer Software

Source Code Page

.16

Fieesesrssusecracses vesarsneciisnns

BOPCCCNC e

~Pl " i . l

" 1 " : 1
* atey

" " 12

Speh_recc”. ... OSSP POPTSFONIUPOIOIRPUTOPPPRUIIS I

"DMAC" ' :
: S g Cievrraeirens

Pl "

PIOC_SPC.C™ oo e |9

" d " i .
NV _BA0C" eiiiieieriie e crrr e e st re s vebe s s ssabtosbeere et e s tnsonatessssnsessennnrneeaatressrats
"W "
0 1 O O OO UE OSSO O RSO U R U U OPTPPIOTRRROTOPOON vrrrevon

"Acq_dat.¢c” ’

"Speech.c Source Program

ASR test programy demonstrating the usefulness of using an IR and/or visible sensor
for speech recognition. Mostly written in portable C code.

Program: speech.c ,

Programmer: Patrick T. Marshall

Date: 02/25/90

Organization: WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

... *
/t."t.t‘tt#tt*t“t‘*#tt‘t‘*tt*t‘#t*tttt###t*t*t**##:#ttttt##tt‘#/
/* v

/" Note: The constant varibles "MAXDRIVE, MAXEXT, */

/* ect.” are located in the "dir h" include file . %/

[Ad which is included in "speech.h”. s

,/‘ ‘/

/“"Q‘.‘."‘.tt“tttt*"A‘*‘ﬁ"ttti“ﬁt*“tt##‘ttt#t““"##t“t/

#include "c:\borlandc\thesis\ peech.h”

/* Function prototypes */
int alloc_dma_buf(void), /* Allocate dma buffers */

void intr_sctup(void), /* Sct up interrupt operation */
void dma_sctup(void), /* Set up dma operation */
void dma_finish(void); /* Called via atexit() mechanism */

void interrupt far dma_isr(void),
- void start_dma(char far *,unsigned); /* Start a dma operation */
void init_brd(void); /* Initialize A/D board ¥/
void on_brd(void); /* Turn A/D board on */
void set_up_plt(char[25],double,double,double,double char[3));
void plot(float far *.float,float,unsigned long,int);
void label_plot(label_struct{ 16],int);
void print_plot(void),
void start_plot(void),
void erase_plot(void);
void init_plot(void);
void data_acquisition{void);
void acquire_data(void);
void create_temps(void);
void specch_rec(void),

76

void start_processing_data(void);

void ff12(float far * float far *,unsigned,int);

void plot_data(void);

void plot_info(void);

void plot_time(char,unsigned);

void plot_freqg(char);

/‘

get_file_info(char{25],unsigned*,unsighed long *);
convert_data(float *,unsigned long,unsigned long,char[25]);
#/ '

void average_iemplate(void); |

[Ad ‘ */
* Begin main function : */
* */
main()

{

int display_sctup_screen(void);

void data_acquisition();

void plot_data(); ‘
int read_string (int, int, int, int, char*, char*, int);
char ask_question (int, int. char*, char*);

void wait_message (int, int, char* har*);

void process_acq_menu (int, int);

void message (int, int, char*, char*);

void clear_message (void);

logical file_exists (char*); _

void build_path (char*, char, char*, int);

unsigned char key;

clrscr();
cursor_off();
display_sctup_screen();
e_xit = FALSE;

do ’
‘ .
key = rcad_key();
switch \acy)

{

casc Fl1:
data_acquisition(); /* Controls DMA data transfer */

e_xit = FALSE;
break; '
case F2:

7

e R R AR T

-

s R dcsindE e s e, o e

plot_data();
cursor_off();
e_xit = FALSE;
break;
case F3:
create_temps();
e_xit = FALSE;
break;
case F4:
speech_rec();
‘e_xit = FALSE;
break;
case ESC:
e_xit = TRUE;
break;
)
) while (! e_xit);
cursor_on();
} /* End of main */

display_sctup_screen()

{
char disk_space_buf[33],memory[33];
struct dfree disk;
unsigned long disk_space,max_par;

clrscr();

normal_video();

gotoxy (28,1);

cputs ("SPEECH RECOGNITION PROGRAM");
create_window(DOUBLE,25,3,55,16);
gotoxy (6,1);

textcolor (LIGHTRED);

cputs ("F1");

textcolor (LIGHTGRAY);

cputs ("-Data Acquisition ");

gotoxy (6,3);

textcolor (LIGHTRED);

cputs ("F2");

textcolor (LIGHTGRAY);

cputs ("-Plot Data ");

gotoxy (6,5);

textcolor (LIGHTRED);

cputs ("F3");

78

textcolor (LIGHTGRAY);
cputs ("-Create Templates ");
gotoxy (6,7);
:>xtcolor (LIGHTRED),
cputs ("F4");
textcolor (LIGHTGRAY);
cputs ("-Speech Recognition™);

- gotoxy (2,9); :
getdfree(0,&disk);
disk_space = (long)disk.df avml*(long)dlsk df_sclus*
(long)disk.df_bsec;
ultoa(disk_space,disk_space_buf,10);
cputs ("Disk space: *); '
textcolor (LIGHTGRAY);
cputs (disk_space_buf);
cputs (" bytes");
gotoxy (2,11);
max_par=allocmem(Ox{fff, &seg);
tol_mem_avail = max_par << 4;
ultoa(tol_mem_avail,memory,10);
cputs ("Memory: ");
textcolor (LIGHTGRAY);
cputs (memory);
‘cputs (" bytes");
return;

}

void data_acquisition()
void process_acq._menu (int, int);
unsigned bar, active_bar=1;
- - —--———unsigned char key;

create_window(DOUBLE,17,12,63,21);
gotoxy (1,1); -
cputs("Start acquisition?");

gotoxy (1,2);

cputs("File Name: ");

gotoxy (1,3);

cputs("Window size: (secs)");
gotoxy (1,4);

cputs ("Number of different runs:");
gotoxy (1,5);

cputs ("Number of similar runs:");
gotoxy (1,6);

79

cputs ("Isolated or continuous:");
gotoxy (1,7);

cputs ("Default Drive:");
gotoxy (1,8);

cputs ("Path Name:");

- for (bar=1; bar<=8; bar++)

process_acq_menu (bar, NORMALY);
bar=1;
process_acq_menu (active_bar, HIGHLIGHT);
cursor_off();
e_xit = FALSE;
do

key = read_key();
switch (key)
{ |
case UP_ARROW:
if (bar> 1)
{ .
process_acq_menu (bar, NORMAL);
bar--; .
process_acq_menu (bar, HIGHLIGHT);
} i
break;
case DOWN_ARROW:
if (bar < §)
{
processlacq_menu (bar, NORMAL);
bar++; ;
process_acg_menu (bar, HIGHLIGHT);
)
break;
case CR:
process_acq_menu (bar, ACTIVE);
break;
case ESC:
e_xit = TRUE;
break;
)

} while (! e _xit);

if (graphics == FALSE) restore_window();
graphics = FALSE;

return;

80

void process_acg_menu (int bar, int mode)
(_
void read_float (float*, float, float, int);
void read_long (lona*, long, fong, int);
void read_int (int*, int, int, int);
void read_char (char*, char, char);
int read_string (int, int, int, int, char*, char*, int);
char ask_question (int, int, char*, char*);
logical file_exists (char*);
unsigned long count;

_count = (unsigned long) 16*allocmem(0xffff,&segadd);
max_ts = (float)count/(2.0*(25000.0+2500.0)); /* In secs */
min_ts = 0.0; '
if (init_flag) .
{
ts = max_ts;
status = 1; -
init_flag = OFF,
)
if (mode == ACTIVE) switch (bar)
{
case 1: restore_window();
restore_window();
strepy(path,dir);
strcat(path,dat_file_name);
if((op_mode[0] =='C") && (num_words > 5)) num_words = 5;
if((op_mode[0] == 'T") && (num_words > 12)) num_words = 12;
acquire_data();
_e_xit = TRUE;
graphics = TRUE;
display_setup_screen();
return;
case 2: read_string (1,15,80,18,"New file name:",dat_file_name, MAXFILE-1);
restore_window();
gotoxy (30,2);
clreol();
break;
case 3: read_float (&ts,min_ts,max_ts,10);
gotoxy (30,3);
clreol();
break;
case 4: read_int(&num_words,min_words,max_words,word_size);
gotoxy (30,4);

81

case 5:

case 6:

case 7;

}

case 8:

clreol();

break;

read_int (&num_runs,min_runs,max_runs,run_size);
gotoxy (30,5);

clreol();

break;

if(op_mode[0] == 'T") op_mode[0] ='C";

else op_mode[0] =T

gotoxy (30,6);

clreol();

break;

read_string (1,15,80,18,"New drive:",drive, MAXDRIVE-1);
restore_window();

gotoxy (30,7);

clreol();

break;

read_string (1,15,80,18,"New path name:",dir, MAXDIR-1);
restore_window();

gotoxy (28,8);

clreol();

break;

if (mode == HIGHLIGHT |l mode == ACTIVE) inverse_vidco();
switch (bar)

{

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

gotoxy (30,1);

cprintf("%s", "YES");

break;

gotoxy (30,2); :
cprintf("%s", dat_file_name);
break;

gotoxy (30,3);

cprintf (" %f", ts);

break;

gotoxy (34,4);
cprintf("%3.3d", num_words);
break;

gotoxy (34,5);
cprint{("%3.3d", num_runs);
break;

gotoxy (30,6);

if(op_mode[0] == 'C") cprintf("%s", "Continuous");
else cprintf("%s", "Isolated");
break;

gotoxy (35,7);

82

cprintf("%s:", drive);
break;

case 8: gotoxy (28,8);
cprintf("%s", dir);
break;

normal_video!);
return;

}

void plot_data()

(‘
void process_plot_menu (int, int);
unsigned bar,active_bar=1;
unsigned char key;

max_ts = 0.8;
create_window(DOUBLE.15,6,65,13);
gotoxy (1,1);

cputs("Start plotting:"); -
gotoxy (1,2);

cputs("Plot information:");
gotoxy (1,3);

cputs("Plot photo time data:");
gotoxy (1,4);

cputs("Plot mic time data:");
gotoxy (1,5);

cputs("Plot photo freq data:”);

- gotoxy (1,6); - o

cputs("Plot mic freq data:");
for (bar=1; bar<=6; bar++)
process_plot_i.:¢cnu (bar, NORMAL);
bar=1,
process_plot_menu (active_bar, HIGHLIGHT);
cursor_off();
e_xit = FALSE;
do

{
key = read_key();
switch (key)

{ ,
case UP_ARROW:
if (bar > 1)

83

3 ok, 1R A SRS N TR S S R B IR Mt A AR R S B A MR R A s e e e s s o

{
process_plot_menu (bar, NORMAL);

bar--;
process_plot_menu (bar, HIGHLIGHT);
}
break;
case DOWN_ARROW:
if (bar < 6)

{
_process_plot_menu (bar, NORMAL);

bar++;
process_plot_menu (bar, HIGHLIGHT);

)
break;
case CR:
process_plot_menu (bar, ACTIVE);
break;
case ESC:
e_xit = TRUE;
break;
}
} while (! e_xit); ‘
if (graphics == FALSE) restore_window();
graphics = FALSE;
return;

}

void process_plot_menu(int bar, int mode)
{

void read_char (char*, char, char);

void photo_freq_info(void); \
void mic_freq_info(void); |
int read_string (int, int, int, int, char*, char*, int);

logical file_exists (char*); \

e_xit = FALSE:
if (mode == ACTIVE) switch (bar)
{

case 1: if ((*plot_photo_time_flag =="'y") Il
(*plot_photo_time_flag =="'Y") Il
(*plot_mic_time_flag =="y") |l
(*plot_mic_time_flag =='Y") |l
(*plot_photo_freq_flag =="y") Il
(*plot_photo_freq_flag =="Y") Il

(*plot_mic_freq_ﬂag =="y) |l
(*plot_mic_freq_flag == 'Y'))

restore_window();
restore_window();
strcpy(path,dir);
strcat(path,dat_file_name);

. start_plot();

case 2:

case 3:

- case 4:

case 5:

e_xit = TRUE;
graphics = TRUE;
display_setup_screen();

}

break;

plot_info();

restore_window();

gotoxy (30,2);

clreol();

break; '

if ((*plot_photo_time_flag =="y') Il (*plot_photo_time_flag == 'Y"))
strcpy(&plot_photo_time_flag[0],"NO");

else
strcpy(&plot_photo_time_flag[0],"YES");

gotoxy (30,3); '

clreol();

break;

if ((*plot_mic_time_flag =="y’) (*plot_mic_time_flag == 'Y"))
strepy(&plot_mic_time_flag[0],"NO");

else .
strepy(&plot_mic_time_flag{0],"YES");

gotoxy (30,4);

clreol(); -

break;

if ((*plot_photo_freq_flag=="y") Il (*plot_photo_freq_flag=="Y"))
strepy(&plot_photo_freq_flag[0],"NO");

else :

{
photo_freq_info();
restore_window();
strcpy(&plot_photo_freq_flag[0],"YES");

}
“gotoxy (30,5);

case 6:

clreol();

break;

if (*plot_mic_freq_flag=="y') Il (*plot_mic_freq_flag=="Y"))
strepy(&plot_mic_freq_flag[0],"NO");

85

else
{
mic_freq_info();
restore_window();
strepy(&plot_mic_freq_flag[0],"YES");

}
gotoxy (30,6);
clreol();
break;

} :

if (e_xit == FALSE)

{

switch (bar)
{
case 1: gotoxy (35,1);
' cprintf("%s", "YES");

break;

case 2: gotoxy (35,2);
if(def_flag == TRUE) v

cprintf("%s", "DEFAULT"),
else
cprintf("%s", "CHANGED");

break;

case 3: gotoxy (35,3);
cprintf("%s", plot_photo_time_flag);
break;

case 4: gotoxy (35,4);
cprintf("%s", plot_mic_time_flag);
break;

~ case 5: gotoxy (35,5);

cprintf("%s", plot_photo_freq_flag);
break;

case 6: gotoxy (35,6);
cprintf("%s", plot_mic_freq_flag);
break;

if (mode == HIGHLIGHT | mode == ACTIVE) inverse_video();

}

normal_video();

)

return,

}

void plot_info()
{

86

o

void process_pi_menu (int, int);
unsigned bar,active_bar=1;
unsigned char key;

max_ ts 0.8:
create_window(DOUBLE, 15 12,65,24);
gotoxy (1,1);

cputs("Start time (sec):");

gotoxy (1,2);

cputs("Stop time (sec):");

gotoxy (1,3);

cputs("Beginning word number:");
gotoxy (1,4);

cputs("Ending word number:");
gotoxy (1,5);

cputs("Beginning word mult1ple "%
gotoxy (1,6);

cputs("Ending word multiple:");

- gotoxy (1,7);

cputs("Plot templates:");

gotoxy (1,8);

cputs("Plot mic energy:");

gotoxy (1,9);

cputs("Data file name:");

gotoxy (1,10);

cputs("Default Drive:");

gotoxy (1,11); -

cputs ("Path Name:");

for (bar=1; bar<=11; bar++)
process_pi_menu (bar, NORMAL);

bar=1; '

process_pi_menu (active_bar, HIGHLIGHT);

cursor_off();

e_xit=FAL'E;

*do

{
key = read_key();
switch. (key)
{
case UP_ARROW:
if (bar> 1)
{
process_pi_menu (bar, NORMAL);
bar--;
process_pi_menu (bar, HIGHLIGHT);

}
break;
case DOWN_ARROW:
if (bar < 11)
{
process_pi_menu (bar, NORMAL);
bar++;
process_pi_menu (bar, HIGHLIGHT);
}
break;
case CR:
process_pi_menu (bar, ACTIVE);
break;
case ESC:
e_xit = TRUE;
break;
}
} while (! e_xit);
e_xit = FALSE;
graphics = FALSE;
return;

}

b5
2
55

g 'fu*w‘ ik

void process_pi_menu(int bar, int moae)

void read_float (float*, flodt, float, int);

void read_long (long*, long, long, int);

void read_int (int*, int, int, int);

void read_char (char*, char, char);

int read_string (int, iny, int, int, char*, char*, int);

logical file_exists (Char*);

float prev_vall;long prev_val2;int prev_val3;char prev_vald[MAXFILE];

e_xit = FALSE;
if (mode == ACTIVE) switch (bar)
{
case |: prev_vall = start_time;
read_float(&start_time,min_time,max_time,4);
if(prev_vall != start_time) def_flag = FALSE;
gotoxy (30,1);
clreol();
break;
case 2: prev_vall = stop_time;
read_float(&stop_time,min_time,max_time,4);

88

if(prev_vall != start_time) def_flag = FALSE;
- gotoxy (30,2);
clreol();
break;
case 3: prev_val3 = beg_word;
read_int (&beg_word,0,max_words,4);
gotoxy (30,3);
clreol();
break; '
case 4: prev_val3 = beg_word;
read_int (&end_word,0,max_words,4); .
if(prev_val3 != end_word) def_flag = FALSE;
gotoxy (30,4);
clreol();
break;
- case 5: prev_val3 = beg_mult;
read_int (&beg_mult,0,max_plots,4);
if(prev_val3 !=beg_mult) def_flag = FALSE;
gotoxy (30,5);
clreol();
break;
case 6: prev_val3 = end_mult;
read_int (&end_mult,0,max_plots,4);
if(prev_val3 != end_mult) def_flag = FALSE;
gotoxy (30,6);
clreol();
break;
case 7: strcpy(prev_val4,plot_tmps);
if ((*plot_tmps=="y") Il (*plot_tmps=='Y"))
strepy(&plot_tmps[0],"ND");
else
{
strcpy(&plot_tmps[0],"YES");
beg_mult = 1;end_mult = 1;

} .
if(*prev_vald != *plot_tmps) def_flag = FALSE;
strcpy(dat_path,dir);
strcat(dat_path,dat_file_name);
gotoxy (30,7);
clreol();
break;

case 8: if(plot_mic_energy_flag{0] == 'Y") strcpy(&plot_mic_energy_flag[0],"NO");
else strepy(&plot_mic_cnergy_flag[0],"YES");
gotoxy (30,8);
clreol();

89

case 9;

case 10

case 11

)
if (e_xit
{

switch
{

case 1

break; -

strepy(prev_vald,dat_file_name);

read_strirg (1,15,80,18,"New file name:",dat_file_name, MAXFILE-1);
if(prev_val4 != dat_file_name) def_flag = FALSE;

restore_window();

gotoxy (30,9);

clreol();

" break:

:strepy(prev_vald,drive);

read_string (1,15,80,18,"New drive:",drive, MAXDRIVE-1);
if(prev_val4 != drive) def_flag = FALSE;
restore_window();

gotoxy (30,10);

cireol();

break;

:strepy(prev_vald, dir);

read_string (1,15,80,18,"New path name:",dir, MAXDIR-1);
restore_window();

if(prev_val4 != dir) def_flag = FALSE;

gotoxy (30,11);

clreol();

break;

== FALSE)

if (mode == HIGHLIGHT Il mode == ACTIVE) inverse_video();

(bar)

: gotoxy (35,1);
cprintf("%f", start_time);
break;

- case 2: gotoxy (35,2);

cprintf("%f", stop_time);
break;

case 3: gotoxy (35,3);

cprintf("%d", beg_word);
break;

case 4: gotoxy (35,4);

cprintf("%d", end_word);
break;

case 5: gotoxy (35,5);

cprintf("%d", beg_mult);
break; :

case 6: gotoxy (35,6);

cprintf("%d", end_mult);

break; '
case 7: gotoxy (35,7);
cprintf("%s", plot_tmps);
break;
case 8: gotoxy (35,8);
cprintf("%s", plot_mic_energy_flag);
: break; ‘ :
case 9: gotoxy (32,9);
cprintf("%s", dat_file_name);
: break;
case 10:gotoxy (35,10);
cprintf("%s:", drive);
break; ‘
case 11:gotoxy (30,11);
cprintf("%s", dir);
break;

no_rma!_video();
) .
return;

}

void photo_freq_info()

{
void process_phOto__freq_info_menu(int, int);
unsigned bar,active_bar=1;
unsigned char key;

max_ts = 0.8;
create_ window(DOUBLE, 15,10,65,14);

gotoxy (1,1); //
cputs("Start Photo freq (Hzy);

gotoxy (1,2);

cputs("Ending Photo freq (Hz)?"),

gotoxy (1,3);

cputs("Max Photo freq amplitude?");

for (bar=1; bar<=3; bar++)
procesc_photo_freq_info_menu(bar, NORMAL);

bar=1; v

process _photo_freq_info_menu(active_bar, HIGHLIGHT);

cursor_off(); '

e_xit = FALSE;

do

{

91

key = read_key();

switch (key)

{

~ case UP_ARROW:
if (bar > 1)

{
process_photo_freq_info_menu(bar, NORMAL);

bar--;
process_photo_freq_info_menu(bar, HIGHLIGHT);

)
break;
case DOWN_ARROW:
if (bar < 6)
{
process_photo_freq_info_menu(bar, NORMAL);
‘bar++;
process_photo_freq_info_menu(bar, HIGHLIGHT);

}
oreak;

ca T
process_photo_freq_info_menu(bar, ACTIVE);
break;
case ESC:
e_xit = TRUE;
break;
}
} while (! e_xit);
e_xit = FALSE;
graphics = FALSE;
return;

}

void process_photo_freq_info_menu(int bar, int mode)
{
void read_float (float*, float, float, int);
void read_long (long*, long, long, int); -
void read_int (int*, int, int, int);
void read_char (char*, char, char);
int read_string (int, int, int, int, char*, char¥, int);
logical file_exists (char*);

~ .

e_xit = FALSE;
if (mode == ACTIVE) switch (bar)

case 1: read_float(&start_photo_freq,min_freq,max_freq,4);

92

gotoxy (30,1);
clreol();
break;
case 2: read_float(&end_photo_freq,min_freq,max freq 4);
gotoxy (30,2);
clreol();
break;
case 3: read_float(&max_photo_amp,min amp max_amp, 4);
gotoxy (30,3);
clreol(); ‘
: break;
}
if (e_xit == FALSE)
{ | . |
if (mode == HIGKLIGHT Il mode == ACTIVE) inverse_video();
switch (bar)
{
case 1: gotoxy (35,1);
cprintf("%f", start_photo_; freq)
break; _
case 2: gotoxy (35,2);
cprintf("%f", end_photo_freq);
break;
case 3: gotoxy (35,3);
cprintf("%f", max_photo_amp);
break;

normal_video();
}
return;

}

void mic_freq_info()

{
void process_mic_freq_info_menu(int, int);
unsigned bar,active_bar=1;
unsigned char key;

max_ts = 0.8;
create_window(DOUBLE,15,10,65,14);
gotoxy (1,1);

cputs("Start MIC freq (Hz)"'"),

gotoxy (1,2);

cputs("Ending MIC freq (Hz)?");

93

gotoxy (1,3);

cputs("Max MIC freq amplitude?");

for (bar=1; bar<=3; bar++)
process_mic_freq_info_menu(bar, NORMAL);

bar=1;

process_mic__freq_,info__menu(active_bar, HIGHLIGHT);

cursor_off();

e_xit = FALSE;

do

{
key = read_key();
switch (key)

case UP_ARROW:
if (bar > 1)
{
process_mic_freq_info_menu(bar. NORMAL);
bar--;
process_mic_freq_info_menu(bar, HIGHLIGHT);
}
break;
case DOWN_ARROW:
if (bar < 3)

{
process_mic_freq_info_menu(bar, NORMAL);

bar++;
process_mic_freq_info_menu(bar, HIGHLIGHT);
}
break;
case CR:
process,_mic,freq__info_menu(bar, ACTIVE);
break;
~ case ESC:
e_xit = TRUE;
break;

} while (! e_xit);
e_xit = FALSE;
graphics = FALSE;
return;

)

void process_mic,freq__info_menu(im bar, int mode)

void read_float (float¥, float, float, int);

- PSR

void read_long (long*, long, long, int);

void read_int (int*, int, int, int);

void read_char (char*, char, char);

int read_string (int, int, int, int, char*, char*, int);
logical file_exists (char*);

e_xit = FALSE;
if (mode == ACTIVE) switch (bar)

case 1: read_ﬂoat(&stan_mic_freq,min_freq,max_freq,4);
gotoxy (30,1);
clreol();
break;

case 2: read_ﬂoat(&end_mic_freq,min_freq,max_freq,4);
gotcxy (30,2);
clreol();
break;

case 3: read_float(&max_mic_amp,min_amp,max_amp,4);
gotoxy (30,3); ’ ’
clreol();
break;

)
if (e_xit == FALSE)

{
if (mode == HIGHLIGHT il mode == ACTIVE) inverse_video();
switch (bar)

{

case 1: gotoxy (35,1);
cprintf("%f", start_mic_freq);

: break;

case 2: gotoxy (35,2);
cprintf("%f", end_mic_freq);
break;

case 3: gotoxy (35,3);
cprintf("%f", max_mic_amp);
break;

normal_video();

}

return;

}

void create_temps|) -

{

95

void process_template_info_menu (int, int);

unsigned bar,active_bar=1;
unsigned char key;

max_ts = 0.8;
create_window(DOUBLE, 15,9,65,24);
gotoxy (1,1);

cputs("Start template processing:");

- gotoxy (1,2);

cputs("Start time (sec):");

© gotoxy (1,3);

cputs("Stop time {sec):");
gotoxy (1,4);

cputs("Beginning word number:");
gotoxy (1,5);

cputs("Ending word number:");
gotoxy (1,6);

cputs("Beginning word multiple:");
gotoxy (1,7);

cputs("Ending word multiple:");
gotoxy (1,8);

cputs("DTW window size:");
gotoxy (1,9);

cputs("Max slope step size:");
gotoxy (1,10);

cputs("Average templates?”);
gotoxy (1,11);

cputs("Data file name:");
gotoxy (1,12);

cputs("Template file name:");
gotoxy (1,13);

cputs("Default Drive:");

gotoxy (1,14);

cputs ("Path Name:");

for (bar=1; bar<=14; bar++)

process_template_info_menu (bar, NCRMAL);

bar=1;

process_template_info_menu (active_bar, HIGHLIGHT);

cursor_off();
e_xit = FALSE;
do

{
key = read_key();
switch (key)
{

96

case UP_ARROW:
‘ if (bar > 1)

{ o '
process_template_info_menu (bar, NORMAL);
bar--; '
process_template_info_menu (bar, HIGHLIGHT);
} .) .

break;
case DOWN_ARROW:

if (bar < 14)

{ | .
process_template_info_menu (bar, NORMAL); .
bar++; :

- process_template_info_menu (bar, HIGHLIGHT);

}
break;
- case CR:
process_template_info_menu (bar, ACTIVE);
break; *
case ESC:
e_xit = TRUE;
break;
} '
} while (! e_xit);
e_xit = FALSE;
graphics = FALSE;
restore_window();
return;

}

void process_template_infc_mnenu(int bar, int mode)

void read_float (float¥, float, float, int);

void read_long (long*, long, long, int);

void read_int (int*, int, int, int);

void read_char (char*, char, char);

int read_string (int, int, int, int, char*, char*, int); -
void average_templates(void);

void create_templates(void);

logical file_exists (char*);

e_xit = FALSE;
if (mode == ACTIVE) switch (bar)
{

97

case 1: restore_window():restore_window();
steepy(dat _path,dir);strcat(dat_path,dat_file_name?
strcpy(tmp_path,dir);strcat(tmp_path,tmp_file_name,;
if(end_word>il) end_word = 11;
clrscr();
printf(" Processing templatcs ... please wait!\n");
printf("\n");
if(best_template_flag[0] == 'N') create_templates();
else find_best_templates();

stop_time = 1.0;
strcpy(dat_patn,dir);strcat(dat_path,"janet");
strepy(tmp_path,dir);strcat(tmp_path,"janet");
create_templates();
stop_time = 1.0;
strcpy(dai_path,dir);strcat(dat_path,"don");
strcpy(tmp_path,dir);strcat(tmp_path,"don");
create_templates();
stop_time = L.5;
strcpy(dat_path,dir);strcat(dat_path,"jill");
strcpy(tmp_path,dir);strcat(tmp_path,"jill");
create_templates();
stop_time = 1.0;
strcpy(dat_path,dir);strcat(dat_path,"mary");
strcpy(tmp_path,dir);strcat(tmp_path,"mary");
create_templates();
‘ e_xit = TRUE;graphics = TRUE;display_setup_screen();
' normal_video();break;
case 2: read_float(&start_time,min_time,max_time,4);
' gotoxy (30,bar);clreol();break;
_case 3: read_float(&stop_time,min_time,max_time,4);
gotoxy (30,bar);clreol();break;
case 4: read_int (&beg_word,0,max_words,4);
gotoxy (30,bar);clreol();break;
case 5: read_int (&end_word,0,max_words,4);
gotoxy (30,bar);clreol();break;
case 6: read_int (&beg_mult,0,max_plots,4);
gotoxy (30,bar);clreol();break;
case 7: read_int (&end_mult,C,max_plots,4);
gotoxy (30,bar);clreol();break;
case 8: read_int (&window_wid.1,1,20,4);
gotoxy (30,bar);clreol();break;
case 9: read_int (&max_step,1,20,4);
gotoxy (30,bar);clreol();break;

98

case 10:if ((*best_template_flag =="y") Il (*best_template_flag =="Y"))
strepy(&best_! template flag[0],"NO");
else
strcpy(&best_template_flag[0],"YES");
gotoxy (30,bar);clreol();break;
case 11:read_string (1,15,80,18,"New file name:",dat_file_name, MAXFILE-1);
- restore_window();gotoxy (30,bar);clreol();break;
case 12:read_string (1,15,80,18,"New file name:",tmp_file_name, MAXFILE D);
restore_window();gotoxy (30,bar);clreol();break;
~ case 13:read_string (1,15,80,18,"New drive:",drive, MAXDRIVE- 1);
restore_window();gotoxy (30,bar);clreol();break;
case 14:read_string (1,15,80,18,"New path name: :",dir, MAXDIR-1);
 restore _window();gotoxy (30,bar);clreol();break;
}
if (e_xit == FALSE)

{
if (mode == HIGHLIGHT il mode == ACTIVE) inverse v1deo()

switch (bar)

{
case 1: gotoxy (35,bar); cprmtf("%s" "YES"); break

case 2: gotoxy (35,bar);cprintf("%f", stari_time); break;
case 3: gotoxy (35,bar);cprintf("%f", stop_time); break;
case 4: gotoxy (35,bar);cprintf("%d", beg_word);break;
case 5: gotoxy (35,bar);cprintf(“%d”, end_word);break;

~ case 6: gotoxy (35,bar);cprinif("%d", beg_mult);break;
case 7: gotoxy (35,bar);cprintf("%d", end_mult);break;
case 8: gotoxy (35,bar);cprintf("%d", window_width);break;
case 9: gotoxy (35,bar);cprintf("%d", max_step);break;
case 10:gotoxy (35,bar);cprintf("%s" best_template_flag);break;
case 11:gotoxy (32,bar);cprintf("%s", dat_file_name);break;
case 12:gotoxy (32,bar);cprintf("%s", tmp_file_name);break;
case 13:gotoxy (35,bar);cprintf("%s:", drive);break;

 case 14:gotoxy (30,bar);cprintf("%s", dir);break; R

normal_video();

}
return;

}

void speech_rec()

{
void process_spch_rec_info(int, int);
unsigned bar,active_bar=1;

99

unsigned chz-

max_ts = 0.8;max_step = 4;window_width = 3; /* Default constants */

create_window(DOUBLE,15,10,65,25);
gotoxy (1,1);

cputs("Start recognition process:");
gotoxy (1,2),

cputs("Beginning word number:");

- gotoxy (1,3);

cputs("Ending word number:");
gotoxy (1,4);
cputs("Beginning word multiple:");
goioxy (1,5); v
cputs("Ending word multiple:");
gotoxy (1,6);
cputs("Beginning template number:");
gotoxy (1,7);
cputs("Ending template number:");
gotoxy (1,8);
cputs("DTW window size:");
gotoxy (1,9);
cputs("Max slope step size: ")
gotoxy (1,10);
cputs("Data file name:");
gotoxy (1,11);

cputs("Template file name:");
gotoxy (1,12);
cputs("Default Drive:");
gotoxy (1,13);
cputs ("Path Name:");
gotoxy (1,14);
cputs ("Sensor fusion:");
for (bar=1; bar<=14; bar++)

process_spch_rec_info(bar, NORMAL);
bar=1;

proccss_speh_rec_info (active_bar, HIGHLIGHT);

cursor_off();
e_xit = FALSE;
do

key = read_key();
switch (key)

{
case UP_ARROW:
if (bar > 1)

100

{
process_spch_rec_info (bar, NORMAL);

bar--;
process_spch_rec_info (bar, HIGHLIGHT); -
)

break;,
case DOWN_ARROW:
if (bar < 14) ‘

{ ' ‘
process_spch_rec_info (bar, NORMAL);
bar++; ' :
process_spch_rec_info (bar, HIGHLIGHT);

)

break;

case CR:

process_spch_rec_info (bar, ACTIVE);

break; '
case ESC:

e_xit = TRUE;

restore_window();

break;

)
} while (! e_xit);
normal_video();
e_xit = FALSE;
graphics = FALSE; -
return;

}

void process_spch_rec_info(int bar, int mode)
(.

 void read_float (float*, flcat, float, int);

void read_long (long*, long, long, int);

void read_int (int*, int, int, int);

void read_char (char*, char, char);

int read_string (int, int, int, int, char*, char®, int);

logical file_exists(char*);

e_xit = FALSE;
if (mode == ACTIVE) switch (bar)
{

case 1: restore_window();
restore_window();
strcpy(dat_path,dir);
strcat(dat_path,dat_file_name);

101

strepy(tmp_path,dir);
strcat(tmp_path,tmp_file_name);
clrscr();

system("del c:\\borlandc\\thesis\\results.dat");

start_speech_rec(sensor_fusion_flag);

strcpy(dat_path,dir);strcat(dat_path,"jan;c");
strcpy(tmp_path,dir);strcat(tmp__path,"janet");
start_speech_rec(sensor_fusion_ﬂag);
strepy(dat _path.dir);strcat(dat_path,"don");
strcpy(tmp_path,dir);strcat(tmp_path,"don");
start_speech_rec(sensor_fusion_flag);
strcpy(dat_path,dir);strcat(dat _path,"mary");
strcpy(tmp_path,dir);strcat(tmp_path,"mary");”
start_speech_rec(sensor_fusion_flag);
strcpy(dat_path,dir);strcat(dat_path,"jill");
strcpy(tmp_path,dir);strcat(tmp_path,"jill");
start_speech_rec(sensor_fusion_flag);.

e_xit = TRUE;
graphics = TRUE;
break;
case 2: read_int (&beg_word,0,17,4);
gotoxy (30,2); ‘
clreol();
break;
case 3: read_int (&end_word,0,17,4);
gotoxy (30,3);
clreol();
break;
case 4: read_int (&beg_mult,0,max_plots,4);
gotoxy (30,4);
clreol(); |
break; \
case 5: read_int (&end_mult,0,max_plots,4);
gotoxy (30,5);
clreol();
break;

case 6: read_int (&beg_template_num,0,11,4);

gotoxy (30,6);
clreol();
break;

case 7: read_int (&end_template_num,0,11,4);

gotoxy (30,7);
clreol();

102

break;
case 8: read_:at (2vrty Jow_width,1,20,4);
gotoxy (30.8);
clreol();
break;
case 9: read_int (&max_step,1 ,20,4);
gotoxy (30.9);
clreol();
break;

case 10:read Jtrmg (1,15,80,18, "Data file name:"” dat;ﬁle_name.MAXFILE-l);

restore_window(),
gotoxy (30,10);
clreol();

break;

case 11:read_string (1,15,80,18,"Template file name:”,trﬁp_ﬁle_namc,MAXFILE-l);

restore_window();
gotoxy (30,11);
clreol();

oreak;
case 12:read_string (1,15, 80 18,"New drive:",drive, MAXDRIVE 1),

restore_window();
gotoxy (30,12);
clreol();

break;
case 13:read_string (1 15,20,18,"New path name:",dir, MAXDIR-1);

reswore_window();
gotoxy (30,13);
clreol();

break;
case 14:if(sensor_fusion ﬂag—-FALS':) sensor_fusion_flag = TRUE;

else sensor_fusion_tlag = FALSE;
gotoxy (36,14);

clreol();

break;

}
if (e_xit == FALSE)

{
if (mode == HIGHLIGHT |l mode == ACTIVE) inverse_video();
switch (bar)

case 1: gotoxy (35,1);
cprintf("%s","YES");
break;

case 2: gotoxy (35,2);
cprintf("%d", beg_word);

103

R : : - L : v |

“ N
PN

break;

case 3: gotoxy (35,3);
cprintf("%d", end_word);
break;

case 4: gotoxy (35,4);
cprintf("%d", beg_mult);
break;

case S: gotoxy (35,5);
cprintf("%d", end_mult);
break;

case 6: gotoxy (35,6);

. cprintf("%d", beg_template_num);

break;

case 7: gotoxy (35,7); _
Jnrintf("%d", end_template_num);
break;

case 8: gotoxy (35,8);
cprintf("%d", window_width);
break;

case 9: gotoxy (35,9);
cprintf("%d", max_step);
break;

case 10:gotoxy (35,10);
cprinti("%s", dat_file_name);
break;

case 11:gotoxy (35,11);
cprintf{"%s", tmp_file_name);
break;

case 12:gotoxy (35,12);
cprintf("%s:", drive);
break;

case 13:gotoxv (30,13);
cprintf("%s", dir);
break;

case 14:gotoxy (35,14);
if (sensor_fusion_flag == FALSE) cprintf("%s","NO");
else cprintf("%s","YES");

break;
)
normal_video();
}
return;

)

104

- "Plt_spc.c" Source Program

1*
Program contains miscellaneous plot functions used by main.

Program: plt_spc.c

Programmer: Patrick T. Marshall

Date: 2/25/91

Organization:. WRDC/AAWP-2,
WPAFB, OH 45433

. Phone: (513) 255-2471 -

*/
#pragma check_stack(off) o
#include <bios.h>

#include <time.h>

#include <ccnio.h>

#include <io.h>

#include <fcntl.h>

#include <sys\types.h>

#tinclude <sys\stat.h>

#include <dos.hi>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

#include <dir.h>

#include <string.h>

#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"
#include "c:\borlandc\thesis\misc_spck.h"

/* Function prototypes */ '

void set_up_plt(char[25],double,double doublv,double,char[S]),
void plot(float huge *,float,float,unsigned long,int);
void label_plot(label_struci[],int,char{]);

void print_plot(void);

void start_plot(void);

void erase_plot(void);

void init_plot(void);

void fft2(float huge *,float huge *,unsigned,int);
void plot_data(void);

void plot_time(char,unsigned);

105

void plot_freq{char);

void plot_photo_tmps(char,unsigned);
void plot_mic_energy(unsigned);

float huge *convert_data(unsigned *,unsigned, char[] unsigned long *);
get_file_info(unsigned*,unsigned long *);
char ask_question (int, int, char*, char*);
void wait_message (ini, int, char*, char*);
void message (int, int, char*, char*); -
void clear_message (void};

void build_path (char*, char*, char¥, int);
void restore_window(void);

extern char dat_path{80];

extern char plot_mic_energy_flag[4];

logical up_plot=FALSE,down_plot=FALSE; /# Plot pos. flags */

void start_plot()
{
unsigned word_cnt;
int i,start_word,stop_word;
char filename{81],path2[80];
FILE *fileptr; /* File pointer for word file "word.1st" */

if(end_word > 16) end_word = 16;
if((strcmp(plot_tmps,"YES") == 0) && (end_word > 11)) end_word = 11;
strepy(filerame,"c:\\borlandc\\thesis\\word.1st");
if ((fileptr = fopen(filename,"r")) == NULL)
{ |
wait_message(0,7,"WARNING: fopen of word.Ist file failed! ",
"Location: start_plot() routine in plt_spc.c");
} /* Load the word array & create files */
for (i=0;i<=end_word;i++-) fgets(word_buffer[i],40,fileptr);
fclose(fileptr);up_plot=FALSE;down_plot=FALSE;
for(word_cnt=beg_word;word_cnt<=end_word;word_cnt++)
{
build_path(complete_file_name,drive,path,word_cnt);
if (*plot_photo_time_flag =="'Y")
{
if ((up_plot==TRUE) && (down_plot=TRUE))
{
erase_plot(),
up_plot=FALSE;
down_plot=FALSE;

)
if ((up_plot==FALSE) && (down_plot==FALSE))

106

\

init_plot(); -
if(stremp("YES",plot_tmps) == 0)

build_path2(complete_file_name,drive,path,"p",word_cnt);
plot _photo__tmps(‘p',word_cnt);

) .
else

{
plot_time('p',word_cnt); /* Plot photo time */
if(*plot_photo_freq_flag == 'Y') plot_freq('p'); /* Plot photo freq*/
} : .
if ((up_plot==TRUE) && (down_plot==TRUE))
if((print_flag[0] = getch()) == 'p") print_plot();
)
if (*plot_mic_time_flag == YY)

{
if ((up_piot==TRUE) && (down_plot==TRUE))

erase_plot();
up_plot=FALSE;
down_plot=FALSE;

}
if ((up_plot==FALSE) &% (down_plot==FALSE))

init_plot();
if(strcmp("YES",plot_tmps) == 0)

' build_path2(complete_file_name,drive,path,"m",word_cnt); ,
plot_photo_tmps('m',word_cnt);

}
else if(plot_mic_energy_flag[0] =="Y")

build _path(complete__ﬁle__name,drive,path,word_cnt);
\ plot_mic_energy(word_cnt);

1se

plot_time('m',word_cnt); /* Plot mic time */
if (*plot_mic_freq_flag == 'Y") plot_freq('m’); /* Plot mic freq*/
}
if (((up_plot==TRUE) && (down_plot==TRUE))
if((print_flag[0] = getch()) == 'p") print_plot();
} : '

}
if ((up_plot==TRUE) && (down_plot==FALSE))

if((print_flag[0] = getch()) == 'p') print_plot();

107

if ((up_plot==TRUE) Il (down_plot==TRUE))
erase_plot();
return;

}

void plot_time(char flag,unsigned word_cnt)
{
double max_x,max_y,min_x,min_y;
float time_res=0,start_t=0,huge *y_buf;
unsigned finish_flag,tol_num_plots,max_n;
unsigned long buf_size,run_cat,i,ii;
int n;
char file[40]="",pltpos[3],data_type[4]="";
label_struct labels[16];

/* Open file to verify tol_num_plots */

get_file_info(&tol_num_plots,&numbytes);

/* where: tol_num_plots = number of words and/or sentences & */

1* numbytes = window size used to record data */

close(file_handle); /* "file_handle" is a global variable used by */
/* get_file_info to open files and leave open */

if (end_mult > tol_num_plots) end_mult = tol_num_plots;

if (flag =="p") /* Plot photo data */

{
max_y = 5.0;min_y = 0.0;

time_res = 1.0/2500.0; /* 2500 = A/D sampling freq. */

strcpy(&file[0],"c:\\borlandc\\thesis\\photmplt.dat");

strcpy(data_type,"photo”);
}
else /* Plot Mic time data */

{
max_y = 2.5;min_y = -2.5;

time_res = 1.0/25000.0; /* 25000 = A/D sampling freq. */

strepy(&file[0],"c:\\borlandc\\thesis\\mictmpit.dat");

strcpy(data_type,"mic");
}
min_x = start_time;max_x = stop_time;
if (up_plot==FALSE)
{
up_plot=TRUE;
strepy(&pltpos[0],"u”);
}
else if (down_plot==FALSE)

{

108

strcpy(&plipos[0],"1°);
down_plot=TRUE;
} ' .
set_up_plt(file,max_x,min_x,max_y,min _Y,pltpos);
for (i=beg_mul‘t;i<:end__mult;i++)
{
start_t = start_time;
finish_flag = TRUE; /* Tells convert_data that this is the 1st run */
do '

{ ‘ |
y_buf = convert_data(&finish_flag,i,data_type,&buf_size);

if (flag == 'p") for(ii=0;ii<buf_size;ii++) y_buf[ii] += 2.5;
plot(y_buf,time_res.start_tbuf_size,i-1);

farfree((void *)y_buf);start_t += buf_size * time_res;

if (finish_flag == TRUE) break;

}
while (finish_flag != TRUE);

} . :
strcpy(labels[O].l,word__buffer[word_cm]); :

- strcpy(labels[0].t,"1");

labels{0).1t = O;
label_plot(labels, 1,pltpos);
return;

}
void plot_freq(char flag) |

double max_x=0,max_y=0; /* Max x and y values */

double min_x=0, min_y=0; /* Min x and y values */
double min_volts,absolute_min_volts;

float x_beg,mag,freq_res,fs,new_fs;

float stop_t,start_t,volts[1],max_amp;

float huge *in_buf,huge *real_arr,huge *img_arr; .

int INV,skip_flag; : .

char file[40]="”,pltpos[3],data__type[4],plot_info[SO],p_buffer[12];
unsigned long i,real2_size,new_buf_size,max_ints;

unsigned long num_ints,max_arr_size,count,max_n,beg__i,end_i;
unsigned long stop_count,

unsigned tol_num_plots,run_cnt,finish_flag,M,skip_int;
label_struct labels[16];

logical neg_volts_flag,run_flag;

FILE *tmpfile;

‘ /* Open file to verify tol_num_plots */
get_file_info(&tol_num_plots,&numbytes);

109

i

/* where: tol_num_runs = number of words and/or sentences & */
I* numbytes = window size used to record data */
close(file_handle); /* "file_handle" is a global variable used by */
/* get_file_info to open files and leave oper */
if (end_mult > tol_num_plots) end_mult = tol_num_plots;
if (flag =="p") /* Plot photo freq */
{
strepy(file,"c:\\borlandc\\thesis\\phofrplt.dat");
min_x = start_photo_freq;max_x = end_photo_freq;
min_y = 0;max_y = max_photo_amp;
strcpy(data_type,"p");
fs =2500.0; /* Sampling freq in words/sec */
}
else : /* Plot Mic freq data */
{
strepy(file,"c:\borlandc\Wthesis\\micfrplt.dat");
min_x = start_mic_freq;max_x = end_mic_freq;
min_y = O;max_y = max_mic_amp;
strcpy(data_type,"mic");
fs = 25000.0; /* Sampling freq in words/sec */
)
stop_t = stop_time;
start_t = start_time;
if (up_plot==FALSE)

up_plot=TRUE;
strepy(&pltpos[0],"u™);

}
else if (down_plot==FALSE)
{
strepy(&pltpos[0],"1");
down_plot=TRUE;
}
beg_i = fs*start_t;end_i = fs*stop_t;
num_ints = end_i-beg_i;
for (run_cnt=beg_mult;run_cnt<=end_mult;run_cnt++)
{ /* Use the following temp file to process data */
if ((tmpfile = fopen("c:\\borlandc\\thesis\\tmp.dat","wb+")) == NULL)
{
printf("ERROR(1): data file open failed"\n");
prind("Location: plot_freq routine in plt_spc.c.\n");
pen.or(n u);
exit(1);

}

finish_flag = TRUE; /* Tells convert_data 1st run */

110

stop_count = 0,
do

{ : _
in_buf = convert_data(&finish_flag,run_cnt,data_type,&buf_size);

swrite((void *)in_buf,sizeof(float),buf_size,tmpfile);
farfree((void *)in_buf);

- stop_count += buf_size;

)

whilz(finish_flag==FALSE),

max_ints = farcoreleft()/4/2;

if(nun_ints<max_ints) M = floor(loglO(num mts)/loglO(Z)),
else M = floor(log10(max_ints)/1og10(2));

if(M>13) M = 13; /* An upper limit FFT processing time constraint */
max_ints = pow(2,M);

skip_int = floor((float)num_ints/(float)max_ints);

if ((real_arr = farcalloc(max_ints,sizcof(float))) == NULL)

{

printf("ERROR(2): real array memory allocation failed.\n");
printf("num_ints = %Iu \n",num_ints}; '

- perror("");
. printf("Location: plot_freq() routine in plt__ spcc\n"),

exit(1);
}

_if ((iing_arr = farcalloc(max_ints,sizeof(float))) == NULL)

{ .
printf("ERROR(3): img array memory allocation failed.\n");

printf("num_ints = %lu \n",num_ints);

perror("");

printf("Location: plot_freq() routine in plt spc.c\n");

farfree((void *)real_ga:ir);

exit(1);

} .

- if (fseek(tmpfile,0OL,SEEK_SET) '=0) ~ - -

{
printf("ERROR(4): data file fseek failed\n");

printf("Location: plot_freq() routine in plt_spc.c.\n");
perror("");
exit(1);
} .
count = O;skip_flag = skip_int + I;
for(i=0;i<stop_count;i++)
{ ’ .
fread((void *)volts,sizeof(float), 1L, tmpfile);
ir(skip_flag > skip_int) /* Throw away data to meet end points */

{

111

real_arr[count] = volts[0];
count++;
skip_flag = 0;
| _
skip_flag++;
}
fclose(tmpfile): /* Calc new fs based on skipped data */
new_fs=(float)count/(stop_t-start_t); '
INV = FALSE;
fft2(real_arr,img_arr, M,INV),
max_amp = -1.0;
for (i=0;i<max_ints;i++)
{
real_arr[i] = log10(sqrt(pow(real_art[i],2)+pow(img_arr[i},2)));
max_amp = max(real _arr{i],max_amp);
}
farfree((void *)img_arr);
freq_res = new_fs/(float)max_ints;
if(run_cnt == beg_mult)
{ o
if(max_y<max_amp) max_y = max_amp;
if(max_x>freq_res*max_ints/2.0) max_x = freq_res*max_ints/2.0;
set_up_plt(file,max_x,min_x,max_y,min_y,pltpos);
}
plot(real_arr,freq_res,0.0,max_ints/2,run_cnt- 1);
farfree((void *)real_arr);

strepy(rlot_infc,"Freq res. = ");
govt(freq_res,5,p, buffer);
strcat(plot_info,p_buffer);
strcat(plot_info," Hz");
strepy(labels{0].1,plot_info);
strcpy(labels[0].t,"i");

" labels[0].1t = 0;
strepy(plot_info,"Start time = ");
gevt(start_t,5,p_buffer);
strcat(plot_info,p_buffer);
strcat(plot_info," sec");
strepy(labels[1].1,plot_info);
strcpy(labels[1].t,"1");
labels[1].1t = 0; .
strepy(plot_info,"Stop time = ");
gevt(stop_t,5.p_buffer);
strcat(piot_info,p_buffer);
strcat(plot_info," sec");

112

strcpy(labels[2].1,plot_info);
strcpy(labels{2}.t,"i");
labels[2].t = 0;
label_plot(labels,3,pitpos);
return;

void plot_photo_tmps(char type_flag,unsigned word_cnt)
(. .

double max_x.max_y,min_x,min_y;

float huge *tempiate_buf;

unsigred numread,finish_flag,tol_num_plots;

unsigred long buf_size,run_cnt,i,file_size;

char file[40]="",pltpos[3];

1abel_struct labels[16];

FILE *file_ptr;

if ((file_ptr = fopen(complete_file_name,"rb")) == NULL)
{ .
wait_message(0,7,"ERROR(1): data file open failed!",
"Location: plot_photo_tmps routine in plt_spc.c");
perror(");
exit(1);
} /* Find file size in bytes */
if ((file_size = filelength(fileno(file_pt1))) == -1L)
{

printf("ERROR(2): file size routine failed"\n");
printf("Location: plot_photo_tmps routine in pit_spc.c\n");
pecror(™);
exit(1);
} - /* Convert file size to number of floats */
buf_size = file_size/4; .
: /* Read chocsen tempiate_buf number */
if ((template_buf := farcailoc(buf_size+1,sizeof(float))) == NULL)
{ ,
printf("ERROR(3): template_buf buffer allocation failed!\n");
printf("Location: plot_photo_tmps routine in plt_spc.c\n");
perror(");
exit(1);
}
numread=fread((void *)template_buf,sizeof(float),buf_size file_ptr);
fclose(file_ptr);
max_y = -50.0;min_y = 0.0;min_x = 0;max_x = buf_size-1;
for(i=0;i<buf_size;i++) max_y = max(max_y,template_buffi]);

113

if(type_flag == 'p’) strcpy(&file[0],"c:\\porlandc\\thesis\\pitptemp.dat”);
else strepy(&file[0],"c:\\borlandc\\thesis\\pitmtemp.dat");
if (up_plot==FALSE)
{
up_plot=TRUE;
strepy (&pltposf0],"u");

}
else if (down_plot==FALSE)
{
strepy(&pltpos{0),"1"):
down_plot=TRUE;
)
set_up_plt(file,max_x,min_x,max_y,min_y,pltpos):
plot(template_buf,1,0,buf_size.1);
farfree((void *)template_bufj;
strepy(lzbelsi0).L word_buffer[word_cnt]);
strepy(labels[0].t,"1");
labels[0].1t = O,
label_plot(labels,1,pltpos);
return;

}

void plot_mic_energy(unsigned word_cnt)
{
float *energy(float *time_inv,unsigned long *n,unsigned mu!t_pum);
float *filter_data(float* unsigned long.unsigned long*);
double max_x,max_y,min_x,min_y;
float huge *energy_buf,time_inv;
unsigned i,muit_num,tol_num_plots,max_n;
unsigned long n;
char file[40]="" pltposi3];
label_struct labels{ 16];

get_file_info(&tol_num_plots,&nuimbytes);
/* where: tol_num_plots = number of words and/or sentences & */
/* numbytes = window size used to record data */
close(file_handle); /* “file_handle" is a global variable used by */
7* get_file_info to open files and leave open */

if (end_mult > tol_num_plots) end_mult = tcl_num_plots;
if(up_plot==FALSE)
{

up_plot=TRUE;

strepy(&pltpos[0],"u™);

}
else if (down_plot==FALSE)

114

{
strepy(&pltpos{0],"1");
down_plot=TRUE;

)

strcpy(&ﬁlc[()]."c:\\borlandc\\thesis\\energy.dal");

max_y = -5000;min_y = 0.0;

min_x = start_time;max_x = stop_time;
for(muh__num=beg_muu;mult,num<=end_,mult;mult__num++)
{ ' .

energy_buf = energy(&time_inv,&n,mult_num);

energy_buf = filter_data(energy_buf,n,&n);

energy_buf = filter_data(energy_buf,n,&n);

for(i=0;i<n;i++) max_y = max(max _y.energy_bufli]);
if(mult_num==beg_rmult) se._up_plt(file,max_x,min_x,max_y,min_ y.pltpos):
plot(encrgy_buf.time__inv.O.n.mult,_num-1); : ;
farfree((void *)energy_buf);

}
strcpy(labels[O].l.word_buffer[word_cm]);
strepy(labels[0].4,"i");

labels[0].1t = 0;

label_plot(labels, I,pltpos);

return;

)

115

\
e

N

A

"Template.c" Source Program

/¥

Program contains speech processing functions used by main. Creates
speech audio and photo templates.

Program: template.c

. Programmer: Patrick T. Marshall

Date: 2/25/91

Organization: WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

*/

#include <bics.ii>

#include <time.h>

#include <conio.h>

#include <io.h>

#include <fcntl.h>

#include <sys\types.k>

#include <sys\stat.h>

#include <dos.h>

#include <math.h>

#include <stdio.h>

#include «stdlib.h>

#include <alloc.h>

#include <dir.h>

#include <string.h>

#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"

extern unsigned long buf_size; /* Buffer size */

extern unsigned long numbytes; /* Total number of bytes to record */
extern int file_handle,window_width,max_step;

extern unsigned seg;

extern unsigned Icng to!_mem_avail,buf_count;

extern char word_bufferj12][20); /* Used to store word name strings */
extern char drive[MAXDRIVE],file_name{MAXFILE],ext{tMAXEXT];
extern char dat_path[80],tmp_path[80],ave_template_flag[4];

extern char complete_file_name[MAXPATH],dirfMAXDIR];

extern char ir_flag[4],mic_flag[4],print_flag[4];

extern int beg_word,end_word;

extern int beg_mult,end_mult;

116

Az

L

extern int num_words;
extern float start_time,stop_time;

/* Function prototypes */
void set_up_plt(char[],double,double,double,double,charf]);
void plot(float huge *,float,float,unsigned long,int);
void plot2(float huge*,float huge*,unsigned,int);
void label_plot(label_struct[],int,char(]);
void print_plo:(void);
void erase_plot(void);
void init_plot(); _ '
float *iso_pho_env(float huge*,unsigned loag,unsigned *);
float *iso_mic_fft(unsigned,unsigned*);
float *normalize(unsigned,fioat huge* float *,unsigned *);
float huge *convert_data(unsigned *,unsignied,char(],unsigned long *);
get_file_info(unsigned*,unsigned long *);
char ask_question (int, int, char*, char*); |
void wait_message (int, int, char*, char*); |
veid message (int, int, char*, char*); 1'
void clear_message (void); ' ’
void build_path (char*, char¥*, char*, int); |
void build_path2 (char*, char*, char*, char¥, int);
- void restore_window(void); ;
float min_distance(float[],ﬁoat[],unsigned)’;

char path2[80);
unsigned word_cnt;

I********************************* e sk e ok o 3ok o ok o o ok e o o 3ok e o ok ok ok ok ok ke ok ke ok k skok sk kok ok ok ok

. (

The following creates word templates and stores results to a file.
**********************************r*************************************/
void create_templates()

{ .

void sensor_fusion_segmentor(char(},char);

void find_template(char{],char,char{]);

int i;

char tmp_file_name[50];

char filename[81]; :

FILE *fileptr; /* File pointer for word file "word.lst" */

strepy(filename,"c:\\borlandc\\thesis\\isoword.1st");
if(end_word > [1) end_word = 11;
if ((fileptr = fopen(filename,"r")) == NULL)

wait_message(0,7,"ERROR(1): fopen of word.lst file failed! ",

117

"Location: create_templates() routine in TEMPLATE.C");
exit(0); : :
} /* Load the word array */
for (i=0;i<=end_word;i++) fgets(word_buffer(i},20,fileptr);
fclose(fileptr);
for(word_cnt=beg_word;word_cnt<=end_word;word_cnt++)
{ .
build_path(complete_file_name,drive,dat_path,word_cnt);
sensor_fusion_segmentor(complete_file_name,'');

™

build_path2(tmp_file_name,drive,tmp_path,"p",word_cnt);
printf("Data file: %s\n",complete_file_name);
printf("Template file: %s\n",tmp_file_name);
find_template(complete_file_name,'p’,tmp_file_name);
*/ ‘
build_path2(tmp_file_name,drive,tmp_path,"m",word_cnt);
printf("Data file: %s\n",complete_file_name);
printf("Template file: %s\n",tmp_file_name);
find_template(complete_file_name,'m’,tmp_file_namz);
} _

return;

)

e e D R e e L e L e

The following is called from create_templates() routine.

Its purpose is to find the best template for each word, for each person.
The DWT algorithm is used to determine which template is the best for
each word. -

**/

void find_template(char filename[],char data_type,char template_file_name[])
{)
unsigned *warp(float*,unsigned,float*,unsigned,float* unsigned*);
float *process_pho_data(char{],float,fioat,unsigned,unsigned*);

float *process_mic_data(char({],float,float,unsigned,unsigned*);

float *find_words(char{],unsigned*,char,unsigned);

void dpfunc(unsigned,unsigned*,unsigned*);

float *filter_data(float*,unsigned,unsigned*);

float *proc_dat,*ave_buf,*word_times;

float tcost,max_y,fs,*template, *test_pat,*warped_buf;

float min_tol_cost,tol_cost,beg_time,end_time;

unsigned long buf_size;

unsigned template_num,max_mult_num,k,peak_n,word_len,word_dis;
unsigned i,ii,jj,count=0,*map,n=0,],beg_i,end_i;

unsigned num_words_found,template_len;

char file[50];

118

label_struct labels[16];
FILE *{ptr{6],*outfile, *timeptr;

strcpy(complete_file_name,filename);

get_file_info(&max_mult_num,&numbytes);

/* where: max_mult_num = number of words and/or sentences & */

I* numbytes = window size used to record data ¥/

close(file_handle); /* "file_handle" is a global variable used by */
/* get_file_info to open files and leave open */

if (end_mult > max_mult_num) end_mult = max_mult_num;

beg_i=beg_mult;end_i=end_mult;

if(data_type ==p') fs = 2500.0;

else fs = 25000.0;

system("del *.$$$");

J*
strepy(&file[0],"c \\borlandc\\thesw\\photmplt dat")
init_plot();
set_up_pli(file,110,0,0.3,0,"u");
*/
for (i=beg_i;i<=end_i;i++) /* Create temporary word files */
{ | |
if((fptr[i] = tmpfile()) == NULL)
{

printf("ERROR(2): temporary file open failed'\n");
printf("Location: find_template() rout.me in template c\n");
perror("");exit(0);
}
if(data_type == 'p’)
build_path(file,drive,"\\borlandc\thesis\\phowrdtm",i);
else build_path(file,drive,"\\borlandc\\thesis\\micwrdtm",i);
if((timeptr = fopen(file,"rb")) == NULL)
{ /* Pointer to word endpoint time file */
wait_message(0,7,"ERROR(3): data file open failed!",
"Location: find_template() routine in template.c");
perror(" ");exit(0);
} _
fread(&num_words_found,sizeof(unsigned), 1L, timeptr);
fread(&beg_time,sizeof(float), 1L, timeptr);
fread(&end_time,sizeof(float), 1L timeptr);
fclose(timeptr);
if(data_type =='p') template = process_pho_data(complete_file_name,
beg_time,end_time,i,&n);
else template = process_mic_data(complete_file_name,
beg_time,end_time,i,&n);
template = normalize(n,template,&max_y,&peak_n);

119

" i
A%

1*

plot(template,1.0,0.0,n,2);

*/

)

if(data_type == 'p') template = filter_data(template,n,&n);
fwrite((void *)template,sizeof(float),n fptr{i]);
farfree((void *)template);

for (i=beg_i;i<=end_i;i++) rewind(fptr(i]);
min_tol_cost = le+5;tol_cost = 0;
for (i=beg_isi<=2nd_i;i++)

{

/* Find min. cos! multiple word file to be DWT template */
n = (unsigned)filelength(fileno(fptr(i));
n /= sizeof(float); '
if((template = farcalloc(n+1,sizeof(float))) == NULL)
{ /* Buffer to hold averaged data */
printf("ERROR(3): buffer allocation failed!\n");
printf("Location: find_template() routine in template.c\n");
perror("");exit(0);
}
fread((void *)template,sizeof(float),n,fpte[i]);
rewind(fptr[i]); '
template_len = n;
for (ii=beg_i;ii<=end_i;ii++)
{
if(ii ==1)
if(ii == end_i) break;
else ii++;
n = (unsigned)filelength(fileno(fptr(ii]));
n /= sizeof(float);
if((test_pat = farcalloc(n+1,sizeof(float))) == NULL)
{ /* Buffer to hold averaged data */
printf("ERROR(4): buffer allocation failed!\n");
printf("Location: find_template() routine in template.c\n");
perror("");exit(0);
)
fread((void *)test_pat,sizeof(float),n,fptr{ii]);
rewind(fptrfii]);
if(data_type == 'p')
{
max_step = 2;
window_width = 1;

else

{

max_step = 2;

120

window_width = 4;

) .

map = warp(test_pat,n-1,template,template_len-1,&tcost,&k);

tol_cost += tcost;

farfree((void *)test_pat);farfree((void *)map);

} |
min_tol_cost = min(min_tol_cost,tol_cost);
if(min_tol_ccst == tol_cost) template_num =i;
farfree((void *)template);tol_cost = 0;

y i

for (i=beg_i;i<=end_i;i++) rewind(fptr{i]);

n = (unsigned)filelength(fileno(fptr{template_num]));

n /= sizeof(float);

if((template = farcalloc(n+1,sizeof(float))) == NULL)

{ /* Buffer to hold averaged data */
printf("FRROR(S): buffer allocation failed'\n";
printf("Location: find_template() routine in tewplate.c\n");
perror(");exit(0);

} ' _

frcad(&template[0],sizeof (float),n,fptr{templute_numy);

if((outfile = fopen(template_file_name,"wb+")) == NULL)

{
wait_message(0,7,"ERROR(6): data file open failed!”,

"Location: find_template() routine in template.c");

. perror(" ");exit(0); '

} .

fwrite((void *)template,sizeof(float),n,outfile);

fclose(outfile);farfree((void *)template);

for (i=beg_i;i<=end_i;i++) fclose(fptr[i]);

return;

}

/******************************#***
The following finds the best template amoung existing templates.

A list of template names are in an ASCII file: "template.lst".

The DWT algorithm is then used to determine which template is the

best for each word.

330030 e e o o o R ok o o e e ok 3k ok e ke o o o s e ok ok ke s ok sk ok o ok oK o ok e ak ok ok s e e e ok e e e o o ok ke o o ok s ok ok e o *kkkokkkk]

void find_best_templates{)
{

void dpfunc(unsigned,unsigned*,unsigned*);
float *ave_buf, *template, *test_pat, *warped_buf;

unsigned *warp(float*,unsigned,float*,unsigned,float*,unsigned*);

121

float tcost,min_tol_cost,tol_cost;
long filesize=0,temp_filesize=0;
unsigned template_num=0;
unsigned numwrite,numread,max_mult_num,k,word_dis;
unsigned i,ii,iii,j,*map; '
unsigned 1,num_file_names=0;
char template_file_names[10][15],filename[81],data_type[2];
label_struct labels[16];
., ‘ FILE *fileptr; /* File pointer ¥/

/ , . strepy(filename,"c:\\borlandc\\thesis\\isoword.lIst");
) if(end_word > 11) end_word = 11;
if ((fileptr = fopen(filename,"t")) == NULL)
i {
- ' wait_message(0,7,"ERROR(1): fopen of word.Ist file failed! ",
R "Location: find_best_templates() routine in TEMPLATE.C");
PR exit(0);
} /* Load word list */ -
i for (i=beg_word;i<=end_word;i++) fgets(word_buffer(i}],20,fileptr);
: fclose(fileptr);
"~ strepy(filename,"c:\\borlandc\\thesis\\template.ist");
= if ((fileptr = fopen(filename,"r")) == NULL)
: wait_message(0,7,"ERROR(2): fopen of tempate.lst file failed! ",
"Location: find_best_templates() routine in TEMPLATE.C");
exit(0);
} /* Load template file names */
- num_file_names = 0; _
N /***/

PN /* Check to make sure the following does not add an extra number */
) /***/
while(fscanf(fileptr,"%s",template_file_names{num_file_names]) != EOF)
num_file_names++;
fclose(fileptr);
strcpy(data_type,"p"); /* Do photo first */
do

for (i=beg_word;i<=end_word;i++)

{

L min_tol_cost = 1e+5;tol_cost = 0;

, for (ii=0;ii<num_file_names;ii++)

— { /* Find min. cost multiple word file to be DWT template */
build_path2(filename,drive,template_file_names[ii],data_type,i);
printf("Reference file: %s\n",filename);
if ((fileptr = fopen(filename,"rb")) == NULL)

122

{

- wait_message(0,7,"ERROR(3): fopen of template file failed! ",
"Location: find_best_templates() rouiine in TEMPLATE.C");
perror("");exit(0);

) :

temp_filesize = filelength(fileno(fileptr));

temp_filesize /= sizeof(float); /* Convert bytes to floats */

if ((template = farcalloc(temp_filesize+1,sizeof(float))) == NULL)

L - ‘ » {

printf("ERROR(4): template buffer allocation failed!\n");
e ' printf("Location: find_best_templates() routine in template.c\n");
A s perror("");exit(0);
B } /* Open & read file (template) for DTW %/
e : numread=fread((void *)template,sizeof(float) temp__ﬁleszze fileptr);
o : fclose(fileptr); '
for(iii=0;iii<num_file_names;iii++)
A if(iii == i)
canliY . if(iii = (num_file names-l)) break

’ - else fii++;

- if ((fileptr = fopen(filename,"rb")) == NULL)
RN . {

wait_message(0,7,"ERROR(S): fopen of file failed! *,
"Location: find_best templatea() routine in TEMPLATE C"),
perror("");exit(0);

o)
7, ‘ filesize = filelength(fileno(fileptr));

filesize /= sizeof(fluat); /* Convert bytes tc floats */
if ((test_pat = farcalloc(filesize,sizeof(float))) == NULL)

: ;‘ff,' o ‘ :

A o printf("ERROR(6): test_pat buffer allocation failed\n");

s - printf("Location: find_best_templates() routine in template. c\n"),
‘ perror("");exit(0);

) _ - numread=fread((void *)test_pat,sizeof(ﬂoat),ﬁiesize,fileptr);
i if(data_type ==p)

i {

max_step = 2;

window_width = I;

[)
0 else
e { |
1 max_step = 2;
t window_width = 4;

123

\ build_path2(filename,drive,template_; file_names[iii],data type i);

T e
T o

~

}

map = warp(test_pat,filesize-1,template,temp_filesize-1,&tcost,&k);
tol_cost += tcost;
farfree((void *)map);
farfree((void *)test_pat);fclose(fileptr);
}
min_tol_cost = min(min_tol_cost,tol_cost);
if(min_tol_cost == tol_cost) tempiate_num = ii;
farfree((void *)template);tol_cost = 0;

} _
build_path2(filename,drive,template_file_names[template_num],data_type,i);

printf("Choosen template = %s\n",template_file_names[template_num]);

if ((fileptr = fopen(filename,"rb")) == NULL)

{
wait_message(0,7,"ERROR(7): fopen of template file failed! ",
"Location: find_best_templates() routine in TEMPLATE.C");
perror("");exit(0);

}

temp_filesize = filelength(fileno(fileptr));

temp_filesize /= sizeof(float); /* Convert bytes to floats */

if ((template = farcalloc(temp_filesize+1,sizeof(float))) == NULL)

printf("ERROR(8): wmplaie buffer allocation failed\n");
printf("Location: find_best_templates() routine in template.c\n");
perror("");exit(0);

numread=fread({void *)template,sizeof(float),temp_ﬁlesize,ﬁleptr);
fclose(fileptr); '
build_path2(filename,drive,"besttemp”,data_type,i);
if ((fileptr = fopen(filename,"wb")) == NULL)
{
wait_message(0,7,"ERROR(9): fopen of best template file failed! ",
"Location: find_best_templates() routine in TEMPLATE.C");
perror("");exit(0);
)
numwrite=fwrite((void *)template,sizeof(flo. t),temp_filesize fileptr);
farfree((void *)template);fclose(fileptr);

}
if(data_type[0] == 'm’) strcpy(data_type,"f");
if(data_type[0] == 'p) strcpy(data_type,"m");

}
while(data_type[0] !'=");
return;

124

"Spchi_rec.c" Source Program

I1*
Program contains speech recognition algorithms.

Program: spch_rec.c

Programmer: Patrick T. Marshall

Date: 2/25/91

Organization: WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

#include <bios.h>

#include <time.h>

#include <conio.h>

#include <io.h>

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <dos.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

#include <dir.h>

#include <string.h>

#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\plot.h"
extern unsighed long buf_size; - I* Buffer size ¥/
extern unsigned long numbytes;
extern int file_handle,window_width,max_step;
extern unsigned long tol_mem_avail,buf_count;

extern char word_buffer[19][41]; /* Used to store word name strings */
extern char drive[MAXDRIVE], file_name[MAXFILE],ext[} IAXEXT];

extern char dat_path[80],tmp_path[80];

extern char complete_file_name[MAXPATH],dirfMAXDIR];
extern char ir_flag{4],mic_flag[4],print_flag[4];

extern int beg_word,end_word,beg_mult,end_mult;

extern int num_words,beg_templaie_num,end_template_num;
extern float start_time,stop_time;

125

*/

/* Tot:l number of bytes to record ¥/

i\ R
N
4\\;

float *nonnahze(unsxgned float huge* float *,unsigned *);

float huge *convert_data(unsigned *,unsigned,char(],unsigned long *),
get_file_info(unsigned*,unsigned long *);

void wait_message (int, int, char*, char*);

void build_path (char*, char*, char¥*, int);

void build_path2 (char*, char*, ¢'.ar*, char¥*, int);

FILE *results_ptr; /* For storing recognition results */

JEFRRRRRRRRRRR Rk R Rk Rk Rk Rk Rk kR Rk kbR kR Rk ko Rk Rk kk ok ok Rk

The following conducts speech recognition in boths modes (isolated or
continous). ‘ :
**/

void start_speech_rec(logical sensor_fusion_flag)

{
void process_spch_rec(char[],char{],unsigned,unsigned,logical);
float *find_words(char[},unsigned*,char,unsigned);

unsigned i,ii;
char filename([81],data_type[l1];
FILE *fileptr; /* File pointer for wo'd file "word.Ist" ¥/

system("del c:\\borlandc\\thesis\\pho_fus.dat");
strepy(filename, "c:\\borlandc\\thesis\\results.dat");
if ((results_ptr = fopen(filename,"a")) == NULL)
{ v
wait_message(0,7,"WARNING: fopen of results.dat file failed! ",
"Location: speech_rec() routine in spch_rec.c.c");

} |

strepy(filename, "c:\\borlandc\\thesis\\word.1st");
strcpy(data_type,"p"); /* Do photo first */
if ((fileptr = fopen(fi'ename,"r")) == NULL)

{

wait_message(0,7 "WARNING: fopen of word.!st file failed! ",
"Location: speech_rec() routine in spch_rec.c.c");

)

for (i=0;i<18;i++} /* Load the word array & create the files. */
{
fgets(word_buffer{i],40,fileptr);
}
fclose(fileptr);
do /* Go through mic & photo */

{
if(sensor_fusion_flag == TRUE)

126

(_ .
. fprintf(results_ptr,"****¥+xxxx%+x SENSOR FUSION RECOGNITION RESULTS
| RkkkaRERREEH ")

printf("*+**¥x*+x4xxxx SENSOR FUSION RECOGNITION RESULTS

************\n")

}
else if(data_type[0] =="p')
{
fprintf(results_ptr,"***¥***+x¥xxk3xxx PHOTO RECOGNITION RESULTS

sxpkkRRERREEEEF "),
pmtf("*****u**n**** PHOTO RECOGNTI‘ION RESULTS

#**********\n)

}

else

{ ‘ .
fprintf(results_ptr,"***#+x+rxk45% MICROPHONE RECOGNITION RESULTS
REERREEREIH\ ")
printf("+**x*+*x2xxxx MICROPHONE RECOGNITION RESULTS

#*********#*\n");
for(i=beg_word;i<=end_word "i++) /* Go through words */

build_path(complete_file_name,drive,dat_path,i); /* Creatmg word file */
if(sensor_fusion_flag == TRUE)

if(end_word <=11) sensor_fusion_segmentor(complete_ﬁle_name,'i'); |
else sensor_fusion_segmentor(complete_file_name,'c’);

}

for(ii—beg_mulﬁk&nd mult;ii++) /* Go through word multiples */

\
- printf("File: %s \n" complete file_name);
/* Find beg & end of words */
fprintf(results_ptr,"File: %s \n",complete_file_name);
/* Find beg & end of words */
process_spch_rec(complete_file_name ,data_type,i,ii,sensor_fusion_flag);

}

}
printf("\n");
fprintf(results_ptr,"\n");
if(data_type[0] == 'm’) strcpy(data_type,”f") /* (f)inished */
else strcpy(data_type,"m"); /* Do (m)ic next */
if(sensor_fusion_flag == TRUE) strcpy(data__type,"t") /* (Dinished */
)
while(data_type[0] !="T);
printf("Done with this run\n");

127

fclose(results_ptr);
© return;

}

JRERRRtokk kR ok ok kR R koo kol kR ok ok ook Rk ok kR bl ko ok

The following is called from speech_rec() routine to process the speech

and recognize words. The word and word multiple are already processed by
speech_rec() as "filename”. This routine will then find the number of
words in filename's recorded speech and compare it to word templates.

Inputs:
filename - comglete file name (i.e. contains complete path & drive).
mult_num - word multiple number
data_type - Type of data working with ("p" - photo or "m" for mic.)

Outputs:
none

Global:
complete_file_name - filename to be processed (includes path & diive)
start_time & stop_time - used in convert_data()
**********4***/
void process_spch, rec(char filename(],char data_type[],unsigned word_num,
unsigned mult_num,logical sensor_fusion_fiag)
{
unsigned *warp(float*, unsxgned float* unsigned,float* unsxgned*),
void dpfunc(unsigned,unsigned*,unsigned*);
float *process_pho_data(char[],float,float,unsigned,unsigned*);
float *process_mic_data(char[],float,float,unsigned,unsigned*);
float min_distance(float{],float[],unsigned);
float *linear_warp(float[],unsigned,float{],unsigned);
void plot2(float huge* float huge*,unsigned,int);
float *ﬁnd_words(char[],un#igned*,char,unsigned);

float *word_buf,min coot--\SOOO *word_times,pho_cost;

float tcost,max_y,max_yl1;

float *template_buf,beg_time,end_time;

unsigned long temp_file_size;

unsigned max_mult_num k,max_n,i,ii,iii, *map,n=0,recognized_word;
unsigned num_words_found,photo_word;

char tmp_file_name(50],file[31]="",pltpos[2];

FILE *template_£ile_ptr,*timeptr, *phoptr;

strepy(complete_file_name,filename);

128

e - -
3

; S e
o ;

get_file_info(&max_mult_num,&numbytes); .
/* where: max_mult_num = number of words and/or sentences & */
/* numbytes = window size used to record data */
~ close(file_handle); /* "file_handle” is a global variable used by */
/* get_file_info to open files and leave open */
start_time = 0;stop_time = numbytes/22.0/2500.0;
/* Create word file that will store processed words found in cont. sig. */
if (data_type[0] == 'p) strepy(&file[0],"c:\\borlandc\thesis\\photemp.dat™);
else strcp)'(&ﬁle[O],"c:\\borlandc\\thcsis\\mictemp.dat");
if(sensor_fusion_flag == TRUE)
{ .
build _path(file,drive,"Wborlandc\\thesis\micwrdtm",mult_num);
if((timeptr = fopen(file,"rb")) == NULL)
K| /* Pointer to word endpoint time file */
~ printf("ERROR(1b): data file open failed!\n");
* printf("Location: process_spch_rec() routine in spch_rec.c\n”);
perror(" ");exit(0);
} .
fread(&num_words_found,sizeof(unsigned), 1L, timeptr);
if((word_times = farcalloc(4*num_words_found,sizeof(float))) == NULL)

{
printf("ERROR(2): template buffer allocation failed\n");
printf("Location: process_spch_rec() routine in spch_rec.c\n");
perror("");exit(0);

)

for(i=0;i<4*num_words_found;i+=4) /* Read word time bohdaries x/

fread(&word_timcs[i],Sizeof(ﬂoat),lL,limeptr); /* beg. of word */
fread(&word_times[i+3),sizeof(float), IL timeptr); /* end of word */

)
fclose(timeptr);

- else

{

word_times = find_words(complete_file_name,&num_words_found,data_type[0],
mult_num),;
if(end_word < 12)

word_times[3] = word_times[4*(num_words_found-1)+3];
num_words_found = 1; - '
if(word_times{3] <=).0)

word_times[0] = start_tirac;

word_times[3] = stop_time;

)

129

)

} ‘ .

for(i=0;i<4*num_words_found;i+=4) /* Now do speech recognition */
{ _ ‘
again: /* For processing mic. word for sensor fusion */
beg_time = word_times[i];end_time = word_times[i+3];
if (data_type[0] == p’)

word_buf = process_pho_data(filename,beg_time,end_time,mult_num,&n);
else word_buf = process_mic_data(filename,beg_time,end_time, mul‘_num,&n);
word_buf = normalize(n,word_buf,&max_y1,&max_n);
min_cost = 5000;
for(ii=beg_template_num;ii<=end template num;ii++)

{ /* Loop for templates in lib. */
if (data_type[0] =='p) /* Create photo template file */
build_path2(tmp_file_name,drive,tmp_path,"p",ii);
else /* Create mic template file */

build_path2(tmp_file_name,drive,tmp_path,"m",if);
if ((template_file_ptr = fopen(tmp_file_name,"rb")) == NULL)

printf("ERROR(3): template file does not exist!\n");
printf("Location: process_spch_rec() routine in spch_rec.c\n");
perror("");exit(0);

} : /* Got file size */
temp_file_size = filelength(fileno(template_file_ptr));

temp_file_size /=4, /* Convert file size to float */
rewind(template_file_ptr); /* Move file pointer to beg. of file */

if((template_buf = farcalloc(temp_file_size+1,sizeof(float))) == NULL)

printf("ERROR(4): template buffer allocation failed\n");
printf("Location: process_spch_rec() routine in spch_rec.c\n");
perror("");exit(0);

)
fread((void *)template_buf,sizeof(float),temp_file_size,template_file_ptr);

if(data_type[0] =='p")
{

max_step = 2;
window_width = 2;

eise

{
max_step = 2;
window_width = 4;
}
map = warp(word_buf,n- 1,template_buf temp_file_size-1,&tcost,&k);
if(ii == beg_template_num) min_cost = tcost;

130

min_cost = min{min_cost,tcost); .
if(min_cost == tcost) recognized_word = ii;
fclose(template_file_ptr);
farfree((void *)map);
farfree((void *)template_buf);

}

farfree((void *)word_but);

if(sensor_fusion_flag == TRUE)

(.
if(data_type[0] =="p)
{ .
photo_word = recognized_word;
pho_cost = min_cost;
data_type[0] ='m";
goto again;

} X
if((min_cost > 0.17) && (pho_cost < 0.005)) /* Use photo word */

{

recognized;word = photo_word;
printf("Picked photo word!!!\n");
fprintf(results_ptr,"Picked photo word!!\n");

}

if((min_cost > 0.6) I} (pho_cost < 0.0001)) /* Use photo word */
A
: recognized_word = photo_word;
printf("Picked photo word!!!\n");
a fprintf(results_ptr,"Picked photo word!!!\n");
CoA }
i }data_type[O] ='p" /* Reset to photo word */
/’ printf("From %f sec to %f sec = '
5/> v %s\n",beg_time,end_time,word_buffer[recognized_word]);
/ , fprintf(results_ptr,"Time = %f sec to %f sec Word = %s",beg_time,end_time,
REe word_buffer[recognized_word]); -
e } |
B farfree((void *)word_times);
return;
- ,’!/_;,
-
e

131

"DMA.c" Source Program .

/**l

/* dma.c -> Contains subroutines used for dma data acquisition
*
* The calling routine must declare the variables in the "extern” list
* below, and the reset_irq() function. Communication from the main
* program to the subroutines is mostly through these global variables.
* The calling routine must give values to dma_chan, dma_irq and
* buf_size, then call alloc_dma_buf(), dma_setup(), and start_dma().
* As each dma buffer fills up, the interupt service routine calls
* start_dma() on the next buffer. The calling routine can wait for
* buf_index to change, then process data pointed to by curr_buf. Cleanup
* is done by dma_finish(),which is called automatically when the program

* exits.

*

* Compiler: Borland's Turbo C

* Set /Gs switch to remove stack probes (a necessity for
* any function called at interrupt state!)

*x

* Written by Tom Nolan - 11/3/89
* Modified by Pat Marshall - 9/17/90
*/

/**/

#include <bios.h>
#include <time.h>

#include <conio.h>

#inc. ade <dos.h>

#include <math.h>

#linclude <stdio.h>

#include <stdlib.h> : , .
#include <alloc.h>

#include <io.h>

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <c:\borlandc\thesis\logical.h>
#pragma check_stack(off)

#define DMAO_BASE 0x00 /* Address of dma controller (chan 0-3) */
#idefine DMAI_BASE 0xCO /* Address of dma controller (chan 4-7) */

/* Interrupt Contoller Definitions */

132

#define INTA00 0x20 /* Base address of int ctrlr */

f#tdefine INTAOI 0x21 /* Address of int ctrir 2nd reg */
#define EOI 0x20 /* Code for non-specific end-of-int */

/* Macros for extracting bytes from 20-bit addresses */
#define LSB(x) *((unsigned char *) &x)

#define MSB(x) *(((unsigned char *) &x) +1)
#define PAGE(x) *(((unsigned char *) &x) +2)

typedef struct
{ _ ‘
unsigned char far *p; /* Pointers to buffers */
unsigned long a; . /* Address of buffer */
unsigned s; /* Size of buffer */ .
} buf_struc;
extern buf_struc dma_buffers[]; ‘ /* DMA buffers */
extern unsigned long numbytes; '
extern char far *curr_buf; /* Pointer to current buffer */
extern unsigned long buf_size; /* Buffer size */
extern int buf_index; /* Index of current buffer */
extern int dma_irq; /* Hardware int request line */
extern int dma_chan; /* Hardware DMA channel number */
extern int file_handle; /* File handle */
extern int lost_buffers; /* Write errors */
extern int irq_flag;
extern int numbuffers;

extern int bufs_filled;
extern unsigned statreg,seg;
extern unsigned long max;

/* Variables - placed in static storage to avoic. excessive stack
* usage in interrupt routines */

; e static unior REGS r; /* General registers */
L static struct SREGS s; /* Segment registers */
| static int sel; /* DMA channel select bits */
o ‘ static int basereg; /* DMA controller base address register ¥/
S ' static int cntreg; /* DMA controller count register */
R static int maskreg; /* DMA controller mask register */
. static int modereg; /* DMA controller mode register */
; static int pagereg; /* DMA page address register */
| _ static int page_tbl{] = /* Table of page register addresses */
* { 0x87, 0x83, 0x81, 0x82, /*for dmachannels0,1,2,3, */
; 0x8f, 0x8b, 0x89, 0x8a }; /* 4,5,6,6,7,*
|
133

char far *dos_crit_addr; /* Address of DOS critical section flag */

static void /* Space for saved int vector contents */
(interrupt far *dma_int_save) (),

int alloc_dma_buf{void); /* Allocate dma buffers */

- void intr _setup(void); /* Set up interrupt operation */
void dma_setup(veid); /* Set up dma operation */
void dma_finish(void);

void interrupt far dma_isr(void);

void start_dma(char far *,unsigned); /* Start a dma operation */

void init_brd(void); /* Initialize A/D board */

void on_brd(void); /* Turn A/D board on */

/* ' */

int alloc_dma_buf() /* Allocate dma buffers */

{ .
unsigned buf; /* Temp variable for various paragraph */

/* addresses */

unsigned size; /* Buffer size in paragraphs */

unsigned numpars,i;

/* This routine allocates buffers that can be filled by dma.
* The buffers are guaranteed to be aligned so that they do not cross
* physical page boundaries. Before calling this routine, set the value
* of numbytes to the required tota! number of bytes to be transfered.
* Note that the maximum buffer size is 64K bytes. Also, the byte count
* is converted to paragraphs, which are the units the DOS memory
* allocation functions work with.
* Buffer information:
* dma_buffers(i).p = pointer to ith buffer's 20-bit physical address
* - dma_buffers(i).a = absolute address of ith buffer
* dma_buffers(i).s = size of ith buffer
* The return is zero if the allocation succeded, non-zero (an MS-DOS
* error code) otherwise,

*/
max=allocmem(0xffff, &seg); /* Get max paragraphs from dos */
if(allocmem(max, &seg) {=-1) /* Now grab it all */
{
printf("Memory alloction failed\n");
return 1;
}
buf = seg;

134

if ((numbytes >> 4) > max) numbytes =max << 4;
numpars = numbytes >> 4; I* Convert bytes to paragraphs */
i = O;numbytes = 0;
‘while(rumpars>3)
{ , _ .
if(((but + numpars - 1) & 0xf000) != (buf & 0xf000))
{ - I* If buffer crossesphys page boundary */
dma_buffers[i].p = (char far *) /* Convert buffer segment */
((long) buf << 16); /* ... to far pointer for rcturn ¥/
dma_buffers[i].a = (unsigned long) buf << 4;
buf = (buf & 0xf000) + ' [*... adjust to next */
0x1000; /* phys page */

else

{

dma_buffers{i].p = (char far *) /* Convert buffer segment */
((long) buf << 16); * ... to far pointer for return */
dma_buffers[i].a = (unsigned long) buf << 4;
buf += numpars; /* Initial attempt at next buffer seg. */
} .
dma_buffers{i].s = (unsigned) /* Convert buffer size to bytes */
(buf << 4) - dma_buffers[i].a-16;
numpars -= dma_buffers[i].s >> 4;
. numbytes += dma_buffers(i].s;
i+
}
numbuffers = i;
i = numbuffers-1;
size = ((dma buffers[i].a+dma_buffers[i].s) >> 4) - seg;
- I* Compute actual size needed */
if (setblock(seg,size) !=-1) /* return error if not enough */

{
printf("Setblock memory resizing failed\n");
return 0;
}
)
* *
void intr_setup(} /* Set up interrupt operation */

/* Before calling this routine set the following variable:
* dma_irq = interupt request number 0-7 (hardware dependent)

*

int intmsk;

r.h.ah = 0x34;

intdosx(&r,&r,&s);

dos_crit_addr = (char far ¥) /* Save its address so it can be tested */
({(long) s.es << 16) I r.x.bx); /* ... as a far pointer */

if(dma_irq < 8) /* Save current contents of dma int vec */

{

/* DOS "get critical flag addr" function */

dma_int_save = getvect(dma_irq + 8); /*ForIRQ's0-7 ¥ '
setvect(dma_irq+8, dma_isr); /* Set up new int service routine */

else

dma_int_save = getvect(dma_irq + 104); /* For IRQ's 8 - 15 (AT only) ¥/

el setvect(dma_irq+104, dma_isr); /* Set up new int service routine */
o intmsk = inp(INTAO1);
0 intmsk &= ~(1 << dma_irq);

S outp(INTAOI, intmsk);
L }

.;\‘,\,\ ' /* . */
o void dma_setup() /* Set up dma operation */
L 1

/* Before calling this routine set the following variable:
i * dma_chan = channel number (hardware dependent)

*/

/* Get current interrupt enable mask */
/* Clear mask bit for dma interrupt */
/* Output new mask, enabling interupt */

/* Isolate channel select bits */
I* Locate corresponding page reg */
/* Setup depends on chan number */

sel = dma_chan & 3;
pagereg = page_tbl{dma_chan];
if(dma_chan < 4)

{

basereg = DMAO_BASE + sel * 2; /* Standard dina controller */

cntreg = basereg + 1;

/* Note that this controller */

maskreg = DMAO_BASE + 10,
modereg = DMAO_BASE + 11;
statreg = DMAQO_BASE + §;

else

cntreg = basereg + 2;
maskreg = DMA1_BASE + 20;
modereg = DMA1_BASE + 22;
statreg = DMA1_BASE + 16;

/* is addressed on "byte" */
/* boundaries */

basereg = DMA1_BASE + sel * 4; /* Alternate dma controller (AT only) */
/* Note that this controller */

/* is addressed on "word" ¥/
/* boundaries */

136

/*
void dma_finish()
{

int intmsk;

/* Free memory. *

.*A

/* Output new mask, disabling interupt */

freemem(seg); .
init_brd(); /* Initialize A/D board */
intmsk = inp(INTAO1); ©[* Get current interupt enable mask */
intmsk 1= (1 << dma_irq); /* Set mask bit for dma interrupt */
outp(INTAO1, intmsk);
setvect(dma_irq+8, dma_int_save); /* Restore old vector contents */
} : '
™

*/_'

void interrupt far dma_isr()

B

/* This routine is entered upon completion of a dma operatidn.

* At this point the current dma_buffer is full and we can write it to

* disk. We set the "available data” pointer to point to the just-

* filled buffer, and start the next dma operation on the other
* buffer. At the conclusion of operations, we output a non-specific

* end-of-interrupt to the interupt controller.
*

* The PC bus provides no mechanism for "unlaching” an interrupt request
" * once it has been serviced. In order to enable the next interrupt,
* the hardware must be designed so that the request can be reset. For
- * example, a write to ar i/o port. The external routine reset_irq()

* must be coded to perform this routine.
*x .

* Declaring this routine as type 'interupt’, ensures that all registers
* are saved, the C data segment is set correctly, and that the routine
* returns with an IRET instruction. Further interrupts are disabled

- * during the execution of this routine.
¥/

curr_buf = dma_buffers[buf_index-1]).p; /* Post just-filled buffer addre;é;«‘; */

buf_index += 1;
if (buf_index > numbuffers)
{

bufs_filled = 1;

irq_flag = 2;

init_brd(); /* Initialize A/D board */
/* Signal end of interupt */

outp(INTAOQ0, EOD);
retumn; 4

137

/* Increment buffer index */

}

dma_setup(); /* Set up next dma oéeration */

start_draa(dma_buffers[buf_index].p,dma_buffers[buf_index].s);
/* Start dma on next buffer */

irg_flag = 1;
dma_chan A= 2; /* Toggle DMA channel */
inp(0x302); /* Reset brd. - sets UIA (-Y2) on A/D board */
outp(INTA00, EOID); | /* Signal end of interupt */
} _
r- *
vad start_dma(buf,count) /* Start a dma operation */
char far *buf; /* Address of buffer to be filled */
unsigned count; I* Size of buffer in bytes */
{
int page;
unsigned long addr = /* 20-bit address of dma buffer *I

FP_QFF(buf) + ((long) FP_SEG(buf} << 4); !

/* This routine starts a dma operation. It needs to know : :
* . the address where the dma buffer starts; '
* . the number of bytes to tranfer |
* The dma buffer address is supplied in segmented, far-pointer
* form (as returned by alloc_dma_buf()). In this routine it is
* converted to a 20-bit address by combining the segment and offset.
* The upper four bits are known as the page number, and are handled
* separately from the lower 16 bits. The transfer count is ;

“* decremented by 1 because the dma controller reaches terminal count
* when the count rolls over from 0090 to ffif. [i
*

* The dma transfer stops when the channel reaches terminal couﬁt
* The terminal count signal is turned around in the interface

i
|

- * hardware to reproduce an interrupt when dma is complete.

.
* Channels 4-7 are on a separate dma controller, available on
* the PC-AT only. They perform 16-bit transfers instead of 8-bit
* transfers, and they are addressed in words instead of bytes.
* This routine handles the addressing requirements based on the

* channel number.
*

* dma_setup() needs to be called before start_dma() in ordei to
* assign values to maskreg, modereg, etc.

*/
page = PAGE(addr); /* Extract upper bits of address */
if(dma_chan >=4) /* For word-orientated channels: */

138

ALV

{

count >>= 1;
addr >>=1;
page &= 0x7e;

/* convert count to words */
/* convert address to words */ .
/* address bit 16 is now in ‘addr' ¥/

count--; ' /* Compute count-1 (xfr stops at ffff) */
outp(maskreg, sel | 0x04); /* Set mask bit to disable dma */
outp(modereg, sel | 0x44); /* xfr mode (sngl, inc, noinit, write) */
outp(basereg, LSB(addr)); /* O/p base address LSB */
outp(basereg, MSB(addr)); /* O/p base address MSB */ ,
outp(pagereg, page); /* O/p page number to page reglster */
outp(cntreg, LSB(count)); /* O/p count LSB */

outp(cntreg, MSB(count)); /* O/p count MSB */ S
/* Clear DMA T/C information register */

inp(statreg);
outp(maskreg, sel); /* Clear mask bit, enabling dma */
}:- ' - "

void init_brd() /* Initialize A/D board */

{
inp(0x300); /* Address to set UIA (- YO) on A/D board ¥

delay(50); /* Wait for 50 msec */
inp(0x300); /* Address to set ULA (-YO0) on A/D board */
delay(50); /* Wait for 50 msec */

}
1* ¥/
void on_brd() /* Turn A/D board on */
{
inp(0x301); /* Turn board on */
)
139
A T e e

J*

"Plot.c"" Source Program .

GENERIC X-Y PLOTTING ROUTINES
Plot description: Plots data on user's screen. Requires running "st_up_plt"
to generate graphics window, etc. Can use this routine to continue
plotting previous plots. |

Program inputs to plot:
float x[10] y[10] 1-D arrays for x & y data
int numpts; Number of data points to plot .
intlast plot Grapkics flag used to shut down graphics
after when finished (0 - leave graphics
on, 1 - shut graphics off)

Set-up_plot description: Creates 1, 2, or 4 plots simuvtaneously on thé user's

screen. Requires a file that contains axis labeling
information. File format:

1. Graph title
2. y-axis label
3. x-axis label
S. Number of x-axis increments
6. x-axis scaling factor
7. Number of y-axis increments
8. y-axis scaling factor

Program inputs tp set_up_plot:

int max_x,min_x,max_y,min_y

int numpts: Number of data points

char file1{25): Data file name

char file2[25]: Axis labeling file name

char pltpos[3]: Plot position/size: "ul", "ur", "11",
& "Ir" are for 1/4 size and "upper”,
"lower", "right", or "left" positions.
"u" or "1" are for 1/2 size and "upper” or "lower"
positions.
"c" is for full size and canter position.

int del_old_plt: Graphics flag used to keep current plots
(0 - erase old plots, 1 - keep old plots)

Programmer: Patrick T. Marshall

140

’-
———e -

e e ke —

’ ~ Organization: WRDC/AAWP-2 .

WPAFB, OH 45433-6543

Date: 15 Nov 90
Language: Turbo C ver. 2.0

*/
#include <c:\borlandc\thesis\ploLh>

unsigned linestyle = 4;

struct linesettingstype oldlsetting;

unsigned color[16] = {2,3,4,5,6,7, 8,9,10,11,12,13,14,15};
FILE *fptr; /* File pointer */

’********* Pkograms begin ***********/
label_plot(label_struct labels[16],int numlabels,char pltpos[])
{ .

int i,max_length=0,length=0,0ldcolor,x_offset=0,y_offset=0;
int height=0;
struct viewporttype cur_view;

oldcolor = getcolor();
getviewsettings(&cur_view);
getlinesettings(&oldlsetting);
settextstyle(SMALL_FONT,HORIZ_ DIR ,5);
for(i=0;i<numlabels;i++)

{ :

length = textwidth(labels[i].1);

height = textheight(labels[i].1);

/* Add on for line key */

max_length = max(max_length,length);
} R
x_offset = cur_view.right-cur_view.left-max_length;
y_offset = 5;

T for(i=0;i<numlabels;i++)

{
outtextxy(x_offset,y_offset+i*height,labels[i].);

/* Draw line key */
if ((labels[il.t == "1") Il (labels{i].t == "L"))

setcolor(labels[i].1t);

setlinestyle(USERBIT_LINE linestyle, NORM _WIDTH);

line(.75*maxwidth+max_length+3-x_offset,13*i+19,.75*maxwidth+
max_length+9,13*i+10);

141

} .
}

setlinestyle(oldlsetting linestyle,oldlsetting.upattern,oldlsetting. thicknest);

setcolor(oldcolor);
return;

print_plot()
{

int errorcode,h,v;

maxheight = getmaxy();

maxwidth = getmaxx();

setviewport(0,0,maxwidth,maxheight, 1);

InitGraf(&h,&v);

printimage(0,0,h,v);

errorcode = graphresult(); 4

if (errorcode != grOk) /* Checking for graphics error */

{
printf("Graphics error: %s\n",grapherrormsg(errorcode));
printf("Location: print_plot() routine in plot3.c\n");
exit(1);

}

return 0;

}

plot(float huge *y.float x_inc,float x_beg,unsigned long numpts,
int line_type)
{
unsigned long i,errorcode;
int X1,Y1,X2,Y2,0ldcolor;

if (line_type > 15) line_type = 15;
if (line_type < 0) line_type = 0;
oldcolor = getcolor();
Yl =m_y*y[0] +b_y;
X1 =m_x *x_beg +b_x;
getlinesettings(&oldlsetting);
setcolor(color{line_typel);
for (i=1;i<numpts;i++)
{
Y2=m_y *yli]l +b_y;
X2 =m_x * (i*x_inc+x_beg) + b_x;
line(¥1,Y1,X2,Y2);

142

X1=X2,Y1 =Y2; ' .
)

errorcode = graphresult();
if (errorcode != grOk) /* Checking for graphics error */

{

closegraph();
printf("Graphics error: %s\n",graphcrrormsg(errorcode))

printf("Location: plot() routinc in plot3. c\n"),
exit(1);
}

setlinestyle(oldlsetting. hnestyle oldlsemng upattern, oldlsemng thxckness),

setcolor(oldcolor);
return;

}

plot2(float x{)].float y[],unsigned numpts,int line_color)
‘ .
" unsigned long int i,ermrcode;!
int X1,Y1,X2,Y2,0ldcolor; I
if (line_color > 13) line coloxJ 13;
if (line _color < 0) line_color = = 0;
oldcolor = getcolor(); |
getlinesettings(&oldlsetting);’ |
setcolor(color[line_color]); f
for (i=0;i<numpts-1;i++) ;
{
Yl=m_y*yli] +b_y; i
X1 =m_x *x[i] + b_x; |
Y2=m_y *y[i+1] + b_y;
X2 =m_x *x{i+1] + b_x;
line(X1,Y1,X2,Y2);
)

errorcode = graphresult();
if (errorcode != grOk) /* Checking for graphics error */
|
closegraph();
printf("Graphics error: %s\n",grapherrormsg(errorcode));
printf("Location: plot2() routinc in plot3.c\n");
exit(1);

)

setlinestyle(oldlsctting.linestyle,oldlsetting.upattern,oldlisetting.thickness);
setcolor(oldcolor);
return;

143

set_up_plt(file,max_x,min_x,max_y,min_y,pltpos)
float max_x,min_x,max_y,min_y;
char file[],pltpos(];
{
void find_precision(float,int*);
float md(float,logical,int);
double fraction,integer;
float x_value,y_value,prev_y_value;
float y_scale,x_scale,x_step_value,y_step_value;
int errorcode; /* Graphics error code */
int x,y,prev_y,x_steps,y_steps,step_x,step_y,baseline;
int plot_height,plot_width;
int X1,X2,Y1,Y2,precision,;
int y_fudge,x_fudge,y_border=20,x_border=60,max_len:
int significant_digits;
char buffer[81];
int length,n;
size_t len;
logical sign_change = FALSE;
struct viewporttype cur_view;

setbkcolor(1);

maxheight = getmaxy();

maxwidth = getmaxx();

if ((fptr = fopen(file,"r")) == NULL)

{ .
perror("fopen #1 failed\n");
printf("Location: set_up_plt() rovtine in plot3.c\n");
exit(1);

)

if (stricmp(pltpos,"ul") == 0)

plot_width = maxwidtlv/2;
plot_height = maxheight/2;
Y1=0;

X1=0;

Y2 = maxheight/2;

X2 = maxwidth/2;
significant_digits = 3;

if (stricmp(pitpos,"ur") == 0)

plot_width = maxwidth/2-2;

144

plot_height = maxheight/2;
Y1=0;

X1 = maxwidth/2;

Y2 = maxheight/2;

X2 = maxwidth-2;
significant_digits = 3;

}

if (stricmp(pltpos,"lI") == 0)
(| . :
plot_width = maxwidth/2;
plot_height = maxheight/2;
Y1 = maxheight/2;
X1=0;

Y2 = maxheight;

X2 = maxwidth/2;
significant_digits = 3;

}
. if (stricmp(pltpos,"lr") == 0)-
{
plot_width = maxwidth/2-2;
plot_height = maxheight/2;
Y1 = maxheight/2;
X1 = maxwidth/2;
Y2 = maxheight;
X2 = maxwidth-2;
significant_digits = 3;

)
if (stricmp(pltpos,”u") ==0)
{
plot_width = maxwidth-2.5*x_border;
plot_height = maxheight/2;
Y1 =0;
X1 = x_border;
Y2 = maxheight/2;
X2 = maxwidth-1.5*x_border;
significant_digits = 5;

} .

if (stricmp(pltpos,"l") == 0)
-plot_width = maxwidth-2.5*x_border;
plot_height = maxheight/2;

Y1 = maxheight/2;

X1 = x_border;

Y2 = maxheight;

X2 = maxwidth-x_border;

145

significant_digits = 5 .

}
if (stricmp(pltpos,"c") == 0)
{
plot_width = maxwidth-2;
plot_height = maxheight;
Y1=0;
X1=0;
Y2 = maxheight;

» X2 = maxwidth-2;

significant_digits = 5;

}

setviewport(X1,Y1,X2,Y2,1);
rectangle(0,0,plot_width,plot_height);

‘ : /* Graph title */
settextstyle(SMALL_FONT,HORIZ_DIR,S);
fgets(buffer,SO,fptr);f gets(buffer,80,fptr); -
length = textwidth(buffer);
outtextxy(plot_width/2-length/2,5,buffer);

/* Y-axis label */
settextstyle(SMALL_FONT,VERT_DIR,4);
fgets(buffer,SO,fptr);fgets(buffer,SO,fptr);
length = textwidth(buffer);
outtextxy(O,plot_heightlz-length/2,buffer);

/* X-axis label */
settextstyle(SMALL_FONT,HORIZ_DIR,4);
fgets(buffer,SO,fptr);fgets(buffer,80,fptr);
length = textwidth(huffer);
outtextxy(plot_width/2-length/2,plot_height-15,buffer);
fgets(buffer,80.fptr);fscanf(fptr, "%d\n",&x_steps);
fgets(buffer,80,fptr);fscanf(fptr, "%f\n",&x_scale);
fraction = modf((double)min_x,&integer);
if(fabs(integer) > 1) min_x = integer;
x_step_value = ((double)((max_x-min_x)/((double) x_steps)*x_scale));
find _precision(fabs(x_step_value),&precision);
if(fabs(min_x) != max_x) x_step_value = md(x_step_value,UP,precision);
x_value = rnd(min_x*x_scale, DOWN,precision);
step_x = (nlot_width-1.5*x_border)/((double) x_steps);
x_fudge = plot_width-l.5*x_border—x_,steps*step_ :

x = x_border;

tgets(buffer,80,fptr);fscanf(fptr, "%d\n",&y_steps);
fgets(buffer,80,fptr);fscanf(fptr, "%f\n",&y_scale);

y_step_value = ((double)((max _y-min_y)/y_steps*y_scale));
fmd_precisinn(fabs(y_step_value),&precision);

if(fabs(min_y) != max_y) y_step_value = md(y_step_value,UP,precision);

146

y_value = md(max_y*y_scale,UP,precision); .
step_y = (plot_height-2*y_border)/((double) y_steps);
y_fudge = plot_height-2*y_border-y_steps*step_y;

y = y_border; ,
X2 =X1, /* Modifying for center rectangle */

X1 +=x; :

for (n = O;n < x_steps+1;n++) /* Creating and labeling x axis tick marks */
{

if(fabs(x_value) < 1.0e-04) x_value = 0;
line(x,plot_height-y_border-2-y_fudge,x,plot_height-y_| border+2~y fudge),
gevi(x_value,significant_digits,buffer);

len = strlen(buffer);

if(len> 1)

{
if (buffer[0] =='-') len = 3*len;
else len = 2*len;

)
outtextxy(x-len,plot_height-y_border-y_fudge+5,buffer);

X +=step_x;
x_value = x_value + x_step_value;
} _ .
X -= Step_x;
X2 +=x; ‘ /* For center rectangle */

plot_width= X2 - X1;

max_x = x_value - x_step_value;

significant_digits = 4;

max_len =0;

for (n = 0;n < y_steps+1;n++) /* Find average y buf size in Chﬂl’b */

{
if(fabs(y_value) < 1.0e-04) y_value =0;
gevi(y_value,significant_digits,buffer);

len = strlen(buffer);
max_len = max(max_len,len);
y=y+stepy;
y_value = y_value - y_step_value;
}
y = plot_height - y_border - y_fudge;
prev_y =y,

y_value = md(min_y*y_scale, DOWN,precision);

prev_y_value = y_value; :

Y2=YI1; /* Modifying for center rectangle *

Y2 +=y;

for (n = y_steps+1;n > O;n--) /* Creating and labeling y axis tick marks */

{
if(fabs(y_value) < 1.0e-04) y_value = 0;

147

v

line(x_border-2,y,x_border+2,y);
gevt(y_value,significant_digits,buffer);
len = strlen(buffer);
outtextxy(x_border-20-2*(len+max_len),y-5,buffer);
y=y-stepy;
y_value = y_value + y_step_value;
if ((y_value < 0.0) && ((y_value+step_y) >=0.0)) .
{
baseline = -prev_y_value*(y-prev_y)/(y_value-prev_y_value)+prev_y;
sign_change = TRUE;
}
prev_y_value = y_value;

prev_y = y;

y +=step_y;
Yl+=y; /* For center rectangle */
plot_height =Y2-YI;
max_y = y_value - y_step_value;
baseline = baseline - y_border;
setviewport(X1,Y!,X2,Y2,1);
clearviewport();
rectangle(0,0,plot_width,plot_height);
setlinestyle(DASHED_LINE,0,NORM_WIDTH);
if (sign_change == TRUE) line(0,baseline,plot_width,baseline);
setlinestyle(SOLID_LINE,0,NORM_WIDTH);
settextstyle(SMALL FONT,HORIZ_DIR,3);
/* Graphical slope and offset conversion factors */
getviewsettings(&cur_view);
errorcode = graphresult();
if (errorcode != grOk) /* Checking for graphics error */
{
closegraph();
printf("Graphics error: %s\n",grapherrormsg(errorcode));
printf("Location: set_up_plt() routine in plot3.c\n");
exit(1);
} _
m_x = (cur_view.right-cur_view.left)/(max_x-min_x);
b_x = (cur_view.right-cur_view.left) - m_x*max_x;
m_y = -(cur_view.bottom-cur_view.top)/(max_y-min_y);
b_y=0-m_y * max_y;
fclose(fptr); /* The following are used for "switch wmdows()" */
if (stricmp(pltpos,"c") == 0)
{

of0] = X1ic[1] = Y1;c[2] = X2ic[3] = Y2;
cm_x =m_x;cm_y =m_y,cb_x =b_x;cb_y =b_y;

148

if (sign_change == TRUE) c_baseline = baseline;
else c_baseline = -1;

b -
if (stricmp(pltpos,"u") == 0)

{
u[0] = X1;u[1] = YLu[2] = X2;u[3] = Y2;
um_ X = m_x;um_y = m_y,ub_x =b_x;ub_y =b_y;
if (sign_change == TRUE) u_baseline = baseline;
else u_baseline = -1; ' ‘

} | .

if (stricmp(pltpos,"1") == 0)

{ '
1{0] = X1;1{1] = YL1[2] = X2:1[3]1 = Y2;
Im_x =m_x;lm_y =m_y,lb_x =b_x;lb_y =b_y;
if (sign_change == TRUE) | baseline = baseline;
else 1_baseline =-1; ‘

}
if (stricmp(pltpos,"ur") == 0)

{ .
ur[0] = X1;ur[1] = YL;ur[2] = X2;ur[3] = Y2;
urm_x = m_x;urm_y = m_y,urb_x = b_x;urb_y =b_y;
if (sign_change == TRUE) ur_baseline = baseline;
else ur_baseline = -1;

}
if (stricmp(pltpos."ul") == 0)

(.
ul{0] = X1;ul[1] = YL;ul[2] = X2;ul[3] = Y2;
ulm_x =m_x;ulm_y = m_y,ulb_x =b_x;ulb_y = b_y;
if (sign_change == TRUE) ul_baseline = baseline;
else ul_baseline =-1; C

} .
if (stricmp(pltpos,"ll") == 0)

1[0] = XL;U[1]) = YL;IU[2] = X2;11[3] = Y2;

Im_x = m_x;llm_y =m_y,lIb_x =b_x;llb_y =b_y;
if (sign_change == TRUE) 1l baseline = baseline;
else 1l_baseline = -1;

}
if (stricmp(pltpos,"Ir") == 0)

{ ,
1r[0] = X 1;ir{1] = Y1;Ir[2] = X2;1r[3] = Y2;
Irm_x =m_x;lrm_y = m_y,Irb_x = b_x;lrb_y = b_y;
if (sign_change == TRUE) Ir_baseline = baseline;
else Ir_baseline = -1;

}

149

return;

}

void switch_windows(char pltpos[])
if (stricmp(pltpos,”c") == 0)

setviewport(c[0],c[1],c[2],c[3],1);

m_x =cm_x;m_y =cm_y,b_x=cb_x;b_y =cb_y;
} : '
if (stricap(pltpos,”u") == 0)

setviewport(u{0],u[1},u[2],u[3],1);

m_X = um_x;m_y =um_y,b_x = ub_x;b_y = ub_y;
}
if (stricmp(pltpos,"l") == 0)
{

setviewport(1[01,1{13,1[2],1{3],1);
m_x =Im_x;m_y = Im_y,b_x =1b_x;b_y =1b_y;
}
if (stricmp(pltpos,"ur") == 0)
{
setviewport(ur{0],ur[1],ur{2],ur[3],1);
m_X = urm_x;m_y = urm_y,b_x = urb_x;b_y = urb_y;

}
if (stricmp(pltpos,ul") == 0)
(.
setviewport(ul{0],ul[1],ul[2],ul[3],1);
m_x = ulm_x;m_y = ulm_y,b_x = ulb_x:b_y = ulb_y;
) ‘
if (stricmp(pltpos,"li") == 0)
{

setviewport(11{01,1[1],11{2],11{3],1);
m_x =lm_x;r 3 -lim_yb_x=1lb_x;b_y=1b_y;

}
if (stricmp(pltpos,"lr") == 0)

{
setvigwport(lr[O],lr[l],lr[2],lr[3],I);
m_x = Irm_x;m_y = Irm_y,b_x = Itb_x;b_y = Irb_y;
}
}

void clear_plots(char pitpos(])
{

struct viewporttype cur_view;

150

'(

int plot_height,plot_width,oldcolor; A ' .

getviewsettings(&cur_view); ,
clearviewport(); /* Now have to redraw border & dashed line (if any) */
plot_height = cur_view.bottom-cur_view.top;
plot_width = cur_view.right-cur_view.left;
rectangle(0,0,plot_width,plot_height);
setlinestyle(DASHED_LINE,0,NORM_WIDTH);
if((stricmp(pltpos,"c") == 0) && (c_baseline !=-1))
line(0,c_baseline,plot_width,c_bascline);
if((stricmp(pltpos,"u") == 0) && (u_baseline !=-1))
line(0,u_baseline,plot_width,u_baseline);
if((stricmp(pltpos,"l") == 0) && (1_baseline !=-1))
line(0,1_baseline,plot_width,l_baseline);
if((stricmp(pltpos,"ur") == 0) && (ur_baseline !=-1))
line(0,ur_baseline,plot_width,ur_baseline);
if((stricmp(pltpos,"ul") == 0) && (ul_baseline !=-1))
line(0,ul_baseline,piot_width,ul_baseline);
if((stricmp(pltpos,"lI") == 0) && (li_baseline !=-1))
line(0,11_baseline,plot_width,11_baseline);
if((stricmp(pltpus,"Ir") == 0) && (Ir_baseline !=-1))
line(0,Ir_baseline,plot_width,Ir_baseline);
setlinestyle(SOLID_LINE,0,NORM_WIDTH);

}

erase_plot()

{
closegraph();
return;

)
init_plot()

int driver=DETECT,mode; /* Graphics driver and mode */
int errorcode; :

/* Determine and setup graphics hardware */
detectgraph(&driver,&mode);
if (driver < 0)

printf("No graphics hardware available!\n");
printf("Graphics driver error code = %d\n",driver);
printf("Location: init_plot() routine in plct3.c\n");
exit(1);

}

151

errorcode=graphresult(); ' _ .
if (errorcode != grOk) /* Checking for graphics error */
(.

printf("Graphics error: %s\n”,grapherrormsg(errorcode));
printf("Location: init_plot() routine in plot3.c\n");
exit(1);

) .

/* Now create the x-y graph */
initgraph(&driver, &mode, "c:\\borlandc\\bgi");
if (driver < 0) '

(
perror("Graphics Error'\n");
printf("Graphics Driver = %d\n",driver);
printf{"Location: init_plot() routine in plot3.c\n");
exit(1);

}

return;

}

JEFRRRRR Rk kKRR kR Aok Rk ok ok ko ok ok kR ok kA kR ko kR kKR kb Rk ko dok kK ok kK ok

R LT T L e T e T T P T

Round input value

Inputs: ,
V - value to be rounded
Outputs:

V - rounded value
**/
float rnd(float V,logical direction,int precision) '

{
double fraction,integer,lempl,temp2;
int count;

fraction = modf((double)V,&integer);

templ = modf(fraction*pow(10,precision),&temp2);
if(fabs(temp1) < 1.0e-04) temp1 = 0;

if(direction == UP) temp1 = ceil(templ);

else templ = floor(temp1);

V =integer + (templ+temp2)/pow(10,precision);
return(V);

}

void find_precision{float del,int *precision)

{

152

int count; ' .

S if(del>=1)
P {

o count = 3;
S do

{
del /= 10.0;
' “count --;
if(del < 1) break;

while(count >= 0);

else

{

count = 0;
_ do

{
del *=10.0;
count ++;

}
while(del < 1);
precision[0] = count;

return,

}

153

"Proc_spc.c" Source Program |

/**

Data processing program that strips low freq photo data from AM data.
Also, microphone data is converted to FFT data

Program: proc_spc.c

Programmer: Patrick T. Marshall

Date: 11/19/91

Organization: WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

**/

#tinclude <bios.h>

#include <time.h>

#include <conio.h>

#include <io.h>

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <dos.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

#include <dir.h>

#include <string.h>

#include "c:\borlandc\thesis\logical.h"
#include "c:\borfandc\thesis\plot.h"
#include "c:\borlandc\thesis\proc_spc.h"

void set_up _plt(L:hm[],double,double,double,double,char[]);
void plot(float huge * float,float,unsigned long,int);

void plot2(float ﬁuge*,ﬂoat huge*,unsigned,int);

void label_plot(l@bel_s:ruct[],int,char[]);

void print_plot(void);

void erase_plot(void);

void init_plot();

extern int beg_mult,end_mult;

[***#******#***;***
The following processes photo words found in recorded speech and returns

154

. _ Lo T

results. This routine uses the "find_data()" routine to strip data from
the recorded speech data file. It then decreases the number of data -
points by skipping data. Decreasing data is required due to a memory
limitation while using the DTW algorithm.

Inputs:
filename - complete file name (i.e. contains complete path & drive).
beg_time - beginning time of word
end_time - ending time of word
mult_num - word multiple number

Outputs: ‘
n - size of output buffer
out_buf - processed output buffer

Global: ,
complete_file_name - filename to be processed (includes path & drive)

start_time & stop_time - used in convert_data()

#*********************’

float *process_pho_data(char filename[),float beg_time,float end_time,
: unsigned mult_num,unsigned *n)

{ .
© float *find_data(char[],char[],float,ﬂoat,unsigned,unsigned*,
unsigned long*);
float *filter_data(float huge*,unsigned long,unsigned long*);
float *out_buf;
unsigned long count=0,beg_n=0,end_n=0;
unsigned max_mult_num,skip_intv=0;

strcpy(complete__ﬁle__name,t”ﬂename);
get_ﬁle_info(&max_mult_num,&numbytes);

/* where: max_mult_num = number of words and/or sentences & */
* numbytes = window size used to record data */
close(file_handle); /* "file_handle" is a global variable used by */

. /* get_file_info to open files and leave open */
start_time = 0;stop_time = numbytes/22.0/2500.0;

beg_n=(unsigned long)(beg_time*2500) -end_n=(unsigned long)(end_time*2500);

skip_intv = (unsigned)(end_n-beg._n)/ 100;

out_huf = ﬁnd_data(ﬁlename,"p“,beg_time,end_time,mult__num,&skip__intv,
_ .&count);

out_buf = filter_data(out_buf,count,&count); /* Smooth out peaks */

n{0] = (unsigned)count;

return((void *)out_buf);

155

.

JRERRERRRRRkkkkk koo kR ok ook ook ok ok sk skokkokok ok kR kokok sk ko ok kR koo Rk ok dkokok

The following processes mic. words found in speech and returns results.
This routine uses the "find_data()" routine to strip data from the recorded
speech data file. The data is then converted to FFT date which is used to
find max peaks w/i certain filter banks. Lastly, this algorithm will then
decrease the numboer of data points by skipping data. Decreasing data is
required due to a memory limitation while using the DTW algorithm.

Inputs: :
filename - complete file name (i.e. contains complete path & drive).
beg_time - beginning time of word
end_time - ending time of word
mult_num - word multiple number

Outputs:
n - size of output buffer
out_buf - processed output buffer

Global: |
complete_file_name - filename to be processed (includes path & drive)
start_time & stop_time - used in convert_dawa{)
**/
float *process_mic_data(char filename[],float beg_time,float end_time,
unsigned mult_num,unsigned *n)
{
fleat *find_words(char{],unsigned*,char,unsigned);
iloat *find_data(char{],char{],float,float,unsigned,unsigned*,
unsigned long*);

unsigned long i=0,ii=0,beg_i=0,end_i=0,max_par,couni=0;
unsigned long max_ints,M,num_ints;

unsigned long INV,mem_avail,prev_buf_size;
unsigned long buf_size skip_flag,max_mult_num;
unsigned finish_flag,numwords,skip_int;

float huge *out_buf,max_amp,pitch_ficg;

float fs.freq_res,huge *real_arr,huge *img_arr;
float volts[1],amplitude,freq,prev_amp,freq_count;
float ave_amplitude,filter_BW,huge *in_buf;
FILE *tmpfile;

char pltpos[3],plot_info[50],p_buffer[12};
label_struct labels[16];

strcpy(complete_file_name,filename);

156

get_file_info(&max_mult_num,&numbytes);

/* where: max_mult_num = number of words and/or sentences & ¥/
* numbytes = window size used ta record data */
close(file_handle); /* “file_bandle" is a global variable used by */
/* get_file_info to open files and leave open */

start_time = 0;stop_time = numbytcs/22.0/2500.0;
beg_i=(unsigned long)(beg_time*25000.0);
end_i=(unsigned long)(end_time*25000.0);
fs = 25000.0; /* Mic sampling freq ¥/
num_ints = end_i-beg_i;
max_ints = (unsigned long)farcorclcft()/4/4
M = (unsigned long)loor(log 10(max_ints)/10g10(2));
max_ints = (unsigned long)pow(2,M);
skip_int = (unsigned)ceil((float)num_ints/(float)max_ints);
if (tmpfile = fopen(“"c:Wborlandc\thesis\mp.dat”,"wb+")) == NULL)
{ B

printf("ERROR(1): data file open failed'\n");

printf("Location: iso_mic_fft routine in proc_spc.c.\n");

perror(" "); - '

exit(l);
}
out_buf = find_data(filename,"m",beg_time,end_time,mult_num &Sklp__lnt

- &count);

fs=(float)count/(end_time-beg_time); /* Calc new fs bascd on skxppcd data */

fwrite((void *)out_buf sizeof(float),count,impfile);
farfree((void*)out_buf);

rewind(tmpfile);
if ((rcal arr = farcalloc(max_ints+1 smof(ﬂoat))) = NULL)

{
pnntf("ERROR(l) real array memory allocatxon failed.\n"};

prinif("num_ints = %lu \n",num 1an)
perror(™);
printf("Location: proc_spc() routine in proc_spc.c.\n");
farfree((void *)real_arr);
exit(1);
)
fread((void *)real_arr smof(ﬂoat) count tmpﬁle).
fclose(tmpfile);
if ((img_arr = farcalloc(max_ints+1,sizeof(float))) == NULL)

{ .
printf"ERROR(2): img array memory allocation failed.\n");

printf("num_ints = %lu \n",num_ints);

perror("");

printf("Lecation: proc_spc() routine in proc_spc.c.\n");
farfree((void *)real_arr);

157

exit(1); .

}
INV = FALSE;
- fft2(real_arr,img_arr, M,INV);
for (i=0;i<max_ints;i++)
real_arr[i] = sqri(pow(real_arr{i],2)+pow(img_arr{i},2));
farfree((void *)img_ait);
freq_res = fs/(float)max_ints;max_amp=-5000;
filter_BW=12;freq_count=0.0;freq=0.0;i=0;count=0;
if ((out_buf = farcalloc(201,sizeof(float))) == NULL)
{
printf("ERROR(5): out_buf buffer allocation failed!\n");
printf("Location: iso_mic_fft() routine in proc_spc.c.\n");
perror("");
. exit(1); ’
’ . .
ave_amplitude = 0.0;ii=0;count=0;freq_count = filter_BW;
for(i=0;i<max_ints;i++)
{
freq = i*freq_res;
if(freq>=2000) filter_BW = 60;
if(freq<freq_count)
{
ave_amplitude += real_arr[i];
count++;

else

{ ‘

ave_amplitude /= (float)count;

out_bufTii] = log10(ave_amplitude);

ave_amplitude = 0.0;

ii++;count = 0;

freq_count += filter_BW; _
}
if(ii>=201) break;

)

farfree((void *)real_arr);

*n = 200;

return((void *)out_buf);

}

/t#***##*##***#*********#****-*******'*************************************

The following is a low pass filter for smoothing data. It performs
a 5-point interpolation.

158

Inputs:
in_buf - data buffer to be filtered (smoothed)
buf_size - size of in_buf
Outputs:
out_buf - ﬁltered result of in_buf
n - size of out_buf

#***/
float *filter_data(float huge *in_buf,unsigned long buf_size,unsigned long *n)
{

unsigned long i=0;

float *out_buf,min_volts,max_volts;

float thresholdl,threshold2;

char file[31]="",pltpos[3];

strepy(&file[0],"c:\\borlandc\ithesis\irinc.dat");

if ((out_buf = farcalloc(buf_size,sizeof(float))) == NULL)

{ . _

printf("ERROR(1): out_buf buffer allocation failed\n");

printf("Location: filter_data() routine in proc_spc.c.\n");

perror("");

exit(0);

}

min_volts = 5.0; ;

for (i=2;i<buf_size-2;i++) /* Smooth out peaks */

{ ,

out_bufli] = (float)((in_buf[i-2] + 4.0*in_bufli-1] + 6.0*in_bufi] +
4.0*in_buffi+1] + in_buf[i+2})/16.0);

min_volts = min(out_bufi-2],min_volts);

}

out_buf[1] = 1/4.0*in_buf{0]+1/2.0*in_buf[1]+1/4.0*in_buf]2];

out_buf[buf_size-2] = 1/4.0*in_buf[buf_size-3]+1/2.0*in_buf[buf_size-2]+

1/4.0*in_buf[buf_size-1];

out_buf{0] = 3/4.0*in_buf[0] + 1/4.0*in_buff1];

out_buf[buf_size-1] = 3/4.0*in_buf[buf_size-1] + 1/4.0*in_buf[buf_size-2};

n{0] = buf_size; '

farfree((void *)in_buf);

return{(void *)out_buf);

JRFERRRRAR AR AR AR o ok ok ok ok o o SRR oo o oS SR R S o o o ok o o ook e o o ok ko ok o o o o o e ok ok ok

The following is an-encrgy normalization algorithm. The input buffer
(in_buf) is normalized w.r.t it's energy content.

159

Inputs:
n - number of data points in in_buf
in_buf - buffer to be normalized
Outputs:
in_buf - normalized buffer
maxy - max y value {(normalized amplitude)
maxn - n value at maxy

********t***/
float *normalize(unsigned n,float huge *in_buf,float *maxy,unsigned *maxn)

unsigned i=0;

float norm=0,min_y=1.0e+06;

/* Find min. to sct offset to zero */
min_y=1.0e+06;
for (i=0;i<n;i++) min_y = min(min_y,in_buf[i]);
for (i=0;i<n;i++) in_buf[i] = in_buffi] - min_y;
/* Calc. denominator for enery normalization */
for (i=0;i<n;i++)
norm += pow(in_buf[i},2);
norm = sgrt(norm);*maxy = - le4;*maxn=0;
/* Energy normalize data */
for (i=0;i<n;i++)
{
in_bufli] /= norm;
maxy[0] = max(maxy[0],in_buf[i]);
if(maxy{0] == in_buf[i}) maxn{0] = i;
}
return((void *)in_buf);

}

/**#*************************

The following is called from find_words() routine. Its purpose is to
find the microphone energy function.

Input variables:
data_buf - empty data buffer
word_num - word multiple number (for convert_data() routine)

Output variables:
data_buf - filled energy data buffer
time_inyv - time between intervals
n - length of buffers

160

u****uu*##********#*******#*'ﬂ*%***********n*****;******************/
float *energy(float *time_inv,unsigned long *n,unsigned mult_num)

float huge *convert_data(unsigned *,unsxgned char[] unsigned long *);
double fract,intpart,x;
float huge *raw_dat,huge *data_ buf fs,window;
float stop_t,energy,time;
unsigned max_mul¢_num,finish_flag,data_buf_size,ii=0;
- unsigned long buf_size,count=0,i=0;
char pltpos{2]; :

get_file_info(&max_mult_num,&numbytes);
/* where: max_mult_num = number of words and/or sentences & */
r* numbytes = window size used to record data */
closc(ﬁle handle); /* "file_handle” is a global variable used by */
/* get_file_info to open files and leave opcn */
fs = 25000.0;window = 300.0;
start_time = 0;stop_time = numbytes/22.0/2500.0;
data_buf_size = ceil(stop_time*fs/window) + I;
if ((data_buf = farcalloc(data_buf_size,sizeof(float))) == NULL)
{ ' |
printf("ERROR(2): data buffer allocation failed!\n");
printf("Location: find_mic_words() routine in cont_rec.c\n");
perror("");
exit(1);
) .
stop_t = O;count = 1;ii = O;energy = 0.0;
finish_flag = TRUE; /* Tells convert_data 1st run */
do /* Average every window'th data point ¥/
{
raw_dat = convert_data(&finish_ ﬂng,mult num,"m",&buf_size);
for(i=0;i<buf_size;i++) SR)
{
energy += fabs(raw_dat{i]);
ii++;
x = (double)ii/window;
fract = modf(x,&intpart);
time += 1/fs;
if(fract == 0)
{
energy /= window;
data_buf[count] = energy;
energy = 0.0;
if(count == |) time_inv[0] = time;

161

count++; ' .
if(count >= data_buf_size)
{
finish_flag = TRUE;
break;
}
}
if(count >= data_buf_size)
‘ .
finish _flag = TRUE;
break;
}
}
farfree((void *)raw_dat);
if(count >= data_buf_size)
{
finish_flag = TRUE;
break;
}
} |
while(finish_flag==FALSE);
data_buff0] = data_buf[1];
tor(i=1;i<count-1;i++) /* Interpolate between data to eliminate time phase */
{ /* shift (i.e., eliminate time offset by shifting waveform to the right */
data_bufli] = (data_buf[i] + data_buf[i+1])/2.0; /* by time_inv[0]/2) */
}
*n = count;
return((void *)data_buf);

/******************************r***

Hraxkkkrirrx WORD BOUNDARY DETECTION SENSOR FUSION ROUTINE

3 ok o ke ok ok ok oK ok K ok K

The following is called from the "template.c” & "spch_rec.c" routines.
Its purpose is to find the correct beginning & ending boundaries for a
given word. This routine compares both data types (mic time energy &
photo time volts) to help decide where words begin & end.

For isolated words this routine relies more heavily on the mic energy
distribution to find words. It searches the mic energy for the largest
peak value & records its time. 1t then checks other mic peaks to see
if they are w/i +/- 0.2 sec of max peak. If they are then this routine
will treat the other peak(s) as part of the original max peak. The

162

algorithin also searches the photo to find the corresponding max-peak value
that is w/i +/- 0.2 sec of miax mic peak Lastly it adjusts photo
endpoints if necessary.

For continuous words this routine relies more heavily on the photo
amplitude to find words. It matches peak photo values with peak

mic values. For a each match this routine checks to see if the

photo beginning is lagging the mic beginning. If it is by a certain
amount then it treats the mic word as two words. Also if the endpoints
don't match w/i a certain amount the routine will agam treat the mic

word as two words.

snput variables: '
filename - complete file name (i.e. contains complete path & drive).

op_mode - (i)solated or (c)ontinuous

~ Output variables:

None

Output word time filenames:
phowrdtm.Onn (nn = 00 to 16)
micwrdtm.Onn (nn = 00 to 16)

Global:
complete_file_name - filename to be processed (includes path & dnve)

start_time & stop_time - used in convert_data()
**/

void sensor_fusion_segmentor(char filename(],char op_mode)

float *find_wortds(char[],unsigned*,char,unsigned);
unsign2d find_pcak(float[],unsigned);
voxd bmld _path (char* char*, char*, mt).

float *pho word_times, *mlc word _times,time pho peak time,mic peak time;
float min_timel,min_time2,mic_peak_value,del_beg,del_end,del_peak;
float pho_beg_time,pho_end_time,mic_beg_time,mic_end_time;

unsigned i,ii,iii,beg_i,end_i,num_pho_words,num_mic_words;

unsigned mic_beg_num,mic_end_num,mic_peak_num;

unsigned pho_beg_num,pho_end_num,mic_word,pho_word,max_mult_num;
unsigned bad_photo_words = 0,extra_mic_words = O,extra pho_words = 0;
unsigned pho_word_match;

int peak_match_arr{30];

extern char complete_file_name(];

char file[50]="";

FILE *phoptr, *micptr;

163

strcpy(complete_file_name, filename); /* For get_ﬁlé,_info() */
get_file_info(&max_mult_num,&numbytes);
/* where: max_mult_num = number of words and/or sentences & */
* numbytes = window size used to record data ¥/
close(file_handle); /* "file_handle" is a global variable used by */
/* get_file_info to open files and leave open */
/* The following is required in convert_data() routine */
start_time = 0;stop_time = numbytes/22.0/2500.0;
beg_i=beg_mult;end_i=end_mult:
for(i=0;i<30;i++) peak_match_arr[i} =-1;
for(i=beg_i;i<=end_i;i++)
{
build_path(file,drive,"\borlandc\\thesis\\phowrdtm",i);
if((phoptr = fopen(file,"wb+")) == NULL)
{ /* Pointer to word endpoint time file */
wait_message(0,7,"ERROR(1): data file open failed!”,
"Location: sensor_fusion_segmentor() routine in proc_spc.c");
perror(" ");exit(0); |
} g
build_path(file,drive,"\\borlandc\\thesis\\micwrdtm"”,i);
if((micptr = fopen(file,"wb+")) == NULL)
{ /* Pointer to word endpoint time file */
wait_message(0,7,"ERROR(2): data file open failed!”,
"Location: sensor_fusion_segmentor() routine in proc_spc.c");
perror(" ");exit(0); j
} !

pho_word_times = find_words/filename,&num_pho_words,'p',i);
mic_word_times = find_words(filename,&num_mic_words,'m' i);
min_time = 32000;bad_photo_words = 0; |
/* Compare data type word times & find correct words beg.' & end.'s */
if(op_mode == 'c') /* Process continuous words - only work on mic. words */
{ .
fwrite(&num_mic_words,sizeof(unsigned), L, micptr);
/* First get rid of mic words w/peaks amplitudes < 0.05 volts */
mic_peak_value = mic_word_times[2];
for(ii=0;ii<4 *num_mic_words;ii+=4)
mic_peak_value = max(mic_peak_value,mic_word_times[ii+2]);
for(ii=0;ii<4*num_mic_words;ii+=4)
{
if(mic_word_times[ii+2] < 0.1*mic_peak_value)
{ /* Found a bogus mic word */
for(iii=ii;iii<4*num_mic_words;iii+=4)
{ /* Shift array values to the left */
mic_word_times[iii] = mic_word_times[iii+4]; /* Beg. time */

164

mic_word_times[iii+1] = mic_word_times[iii+5]; /* Peak time */

mic_word_times[iii+2] = mic_word_times[iii+6]; /* Peak amp. */

mic_word_times[iii+3] = mic_word_times[iii+7]; /* End. time */

} _

num_mic_words--;ii-=4; /* Have to compensate for shift */
) ' .

}

/* Now find beg & end photo words compared to beg. & end mic words */
for(ii:O'ii<4*num_pho words;ii+=4) ‘

{
time = fabs(mic_word_times[1] - pho_ word t1mes[n+l]),
if(ii == 0) min_time! = time;
min_time! = min(time,min_timel);
if(min_timel == time) pho_beg_num = ii;
time = fabs(mic_word_times[4*(num_mic_words-1)+1]

, - pho_word umes[n+l]),
if(ii == 0) min_time2 = time;
min_time2 = min(time,mi.a_time2);
if{min_time2 == time) pho_end_num = ii;

) .

for(ii=pho_beg_num;ii<=pho_end_num;ii+=4)

{ /* Now write photo words for both mic & photo words */
fwrite(&pho_word_timesfii],sizeof(float), 1L, micptr);
fwrite(&pho_word_times[ii+3],sizeof(float), IL,micptr);

}

rewind(micptr); /* Overwrite mic file with new # of mic words */

num_mic_words = (pho_end_num-pho_beg_num)/4+1;

fwrite(&num_mic_words,sizeof(unsigned), 1L, micpts);

}

else /* Prccess isolated words */

for(ii=0;ii<4*num_mic_words;ii+=4)
-{ --/* Match mic & photo wnrds by comparing peak distances */
mic_peak_time = mic_word_times[ii+1];
min_time = 32000;
for(iii=0;iii<4*num_pho_words;iii+=4)
{
pho_peak_time = pho_word_times[iii+1];
time = fabs(pi.o_peak_time - mic_peak_time);
min_time = min(time,min_time);
if(min_time == time) pho_word_match = iii/4;
} /* Matched pair */
if(min_time < 0.2) peak_match_arr[ii/4] = pho_word_match;
} /* Find max mic peak */
mic_peak_value = -5000.0;

165

for(ii=0;ii<4*num_mic_words;ii+=4) .
{ .
mic_peak_value = max(mic_peak_value,mic_word_times[4*ii+2]);
if(mic_peak_value == mic_word_times[4*ii+2]) mic_peak_num = ii;
)
mic_beg_time = mic_word_times[4*mic_peak_num];
mic_end_time = mic_word_times{4*mic_peak_num+3];
pho_beg_time = pho_word_times[4*pcak_match_arr[mic_peak_num]];
pho_end_time = pho_word_times[4*peak_match_arr[mic_peak_num]+3];
/* Check for multiple peaks & combine if found */
if((mic_peak_num > 0) && (num_mic_words > 1))
{ /* Compare to previous peak */
mic_peak_time = mic_word_times[4*(mic_peak_num-1)+1];
if((mic_word_times[4*mic_peak_num+1] - mic_peak_time) <= 0.25)
{ /* Change beg.time to previous peak's beg. time */
mic_beg_time = mic_word_times{4*(mic_peak_num-1)];
if(peak_match_arr[mic_peak_num-1] !=-1) /* Adj. photo beg. also */
pho_end_time = pho_word_times[4*peak_match_arr{mic_peak_num-1]];
}
}
if(mic_peak_num < (num_mic_words - 1))
{ /* Compare to next peak */
mic_peak_time = mic_word_times[4*(mic_peak_num+1)+1];
if((mic_word_times[4*mic_peak_num+1] - mic_peak_time) <= 0.25)
{ /* Change beg.time to next peak's ending time */
mic_end_time = mic_word_times[4*(mic_peak_num+1)+3];
if(peak_match_arr{mic_peak_num+1] !=-1) /* Adj. photo end also */
pho_end_time = pho_word_.imes[4*peak_match_arr{mic_peak_num+1]+3];
}
)
if((fabs(pho_beg_time - mic_beg_*me)) > 0.1)
pho_beg_time = mic_beg_time - 0.05;
if((fabs(pho_end_time - mic_end_time)) > 0.1)
pho_end_time = mic_end_time + 0.05; -
if(num_pho_words == 1)
{
pho_beg_time = pho_word_times[0];
pho_end_time = pho_word_times[3];
}
if(num_pho_words == 0)
{
pho_beg_time = mic_beg_time - 0.05;
pho_end_time = mic_end_time + 0.05;
)
if(pho_beg_time < 0.0) pho_beg_time = 0.0;

166

if(pho_end_time > stop_time) pho_end_time = stop_time; ,
num_pho_words = 1;num_mic_words = 1; ,
fwrite(&num_pho_words,sizeof(unsigned), 1L,phoptr);
fwrite(&num_mic_words,sizeof(unsigned), 1L, micptr);
fwrite(&pho_beg_time,sizeof(float),1L,phoptr); '
fwrite(&pho_end_time,sizeof(float), 1L,phoptr);
fwrite(&mic_beg_time,sizeof(float), 1L,micptr);
fwrite(&mic_end_time,sizeof(float), 1L,micptr);

} A

free((void*)pho_word_times);free((void*)mic_word_times);

fclose(phoptr);fclose(micptr);

}

return;

}

JERRRRERRRR Rk ok R kR Rk kR R kR Rk kR ok Rk ko kR ok R Rk kR Rk kR Kok k ok

The following is called from several routines. Its purpose is to find
the peak word in a word array.

Input variables:
word_times - array contining word info. (beg. time, peak time, peak
value, & end time)
num_words - number of words in array

Output variables: ,
peak_word - word w/highest peak value
****#***/
unsigned find_peak(float word_times[],unsigned num_words) o
{
unsigned i,peak_word;
float peak_value,max_value;

max_value = -5000;

for(i=0;i<num_words;i++)

{
peak_value = word_times[i*4+2];
max_value = max(max_value,peak_value);
if(max_value == peak_value) peak_word = i;

}

return(peak_word);

}

JEEERRRR Rk Rk Rk kR Rk kR kR Rk ok kokok ok ok kR ok ok sk kok kR ko koK K

The following is called from several routines. Its purpose is to find
the words in either photo volts or in mic. energy. Note that if this

167

**/

algorithm does not find a word(s) it returns “0" for number of waqrds
found and an empty "time_arr”.

Input variables:
filename - complete file name (i.e. contains complete path & drive).

type_data - (m)ic or (p)hoto data
mult_num - word multiple number (for convert_data() routine)

Output variables:
time_arr - Array w/beg. & end. times for beg. & ending points of words.

The order is: (1) beginning time, (2) peak time, (3) peak
amplitude, and (3) ending time.
numwords - number of words found

Global:
complete_file_name - filename to be processed (includes path & drive)

start_time & stop_time - used in convert_data()

float *find_words(char filename[],unsigned *numwords,char data_type,

{

unsigned mult_num)

float *filter_data(float huge*,unsigned long,unsigned long*);

float *energy(float*,unsigned long*,unsigned);

float *normalize(unsigned,float huge *,float *,unsigned *);

float huge *convert_data(unsigned *,ur signed,char{],unsigned long *);

float huge *raw_dat,time,fs;

float beg_time,end_time,del_ave=0,thershold,ave_back,ave_foward;

float peak_time = 0,*time_arr,time_inv,max_value,min_value,min_y,max_y;
unsigned long i,ii,iii,j,count,buf_size;

unsigned max_mult_num,array_size,numread,win;

int slope=0,prev_slope=0,store_slope[3];

extern char complete_file_namef];

char file[31]="";

logical finish_flag = TRUE,beg_found = FALSE,peak_found=FALSE;
logical end_found = FALSE,;

strepy(complete_file_name,filenamne); /* For get_file_info() */
get_file_info(&max_mult_num,&numbytes);
/* where: max_mult_num = number of words and/or sentences & */
r* numbytes = window size used to record data */
close(file_handle); /* "file_handle" is a global variable used by */

/* get_file_info to open files and leave open */
if ((time_arr = farcalloc(180,sizeof(float))) == NULL)

{

168

printf("ERROR.(1): time_arr buifer allocation failed\n");
printf("Location: find_pho_words() routine in cont_rec.c\n");
perror("");

exit(1);

} ‘ .
/* The following is required in convert_data() routine */
- start_time = 0;stop_time = numbytes/22.0/2500.0;
if(data_type =="p’)

fs = 2500.0; S ‘
win = 20; ‘ /* Set window width for averaging data */

thershold = 0.0S; /* Set slope voltage threshold */ -
) .

else

, { :
// - win=3;

¢ fs = 25000.0; 4
thershold = 0.02;

\) |

/* Set slope vcltage threshold */

A time_inv = 1.0/fs;

an finish_flag = TRUE;

L min_y = 5000;max_y = -5000; .
do (/* Find min & max values */
{
- if(data_type == 'b')

raw_dat = convert _data(&finish_flag,mult_num,"p",&buf_size);

else l :

{ .
raw_dat = energy(&time_inv,&count,mult_num);

- raw_dat = filteﬂrdata(raw_dat,count,&count); /* Smooth out peaks */
= raw_dat = filter_data(raw_dat,count,&count);

R buf_size = (long)count;

for(i=0;i<buf_size;i++)

‘ N

min_y = min(min_y,raw_dat[i]);
max_y = max(max_y,raw_dat[i]);
))

‘_ farfree((void *)raw_dat);

}

while(finish_flag==FALSE); .
for(i=0;i<3;i++) store_slope(i] = O;max_value=-5000;min_v lue=5000;
finish_flag = TRUE;i: = 0;iii=0;count = 0;

time = (float)win*time_inv; /* Start time */
beg_time=0.0;end_time=0.0;

169

do /* Find beg. & end of words */

q
if(data_type =='p")
{
raw_dat = convert_data(&fipish_flag,mult_num,"p",&buf_size);
for(i=0;i<buf_size;i++) raw_dat[i] -= min_y;
} .
else
{ .
raw_dat = energy(&time_inv,&count,mult_num);

raw_dat = filter_data(raw_dat,count,&count); /* Smooth out peaks */

raw_dat = filter_data(raw_dat,count,&count);

buf_size = (long)count; :

}

for(i=win;i<buf_size-win;i++)

{

-ave_back = 0.0;ave_foward = 0.0;
for(ii=0;ii<win:ii++) ave_foward += raw_dat{i+ii];
for(ii=0;ii<win;ii++) ave_back += raw_dat[i-ii];
ave_foward /= (win-1);ave_back /= (win-1);
del_ave = ave_foward - ave_back;
prev_slope = slope;
if(fabs(del_ave) < thershold) slope = 0;
else if(del_ave >= thershold) slope = 1;
if(del_ave <= -thershold) slope = -1;
if(prev_slope != slope)

/* Find beg. & end. or words */

/* Slope changed */

{
store_slope[0] = store_slope[1];
_ store_slope[1] == store_slope{2];
store_slope[2] = slope;
))

if((store_slope[1] <= 0) && (store_slope[2] == 1) &.&
(beg_found == FALSE)) v
{ /* Found beginuing */
beg_found = TRUE;
if(data_type == 'm') thershold = 0.01;
if(peak_found == TRUE) peak_found = FALSE;
else beg_time = time;
}
if((store_slope{0] == 0) && (store_slope[1} == 1) &&
(store_slope[2] <=0) &&
(peak_found == FALSE) && (end_found != TRUE))
(/* Found peak */
peak_found = TRUE;
peak_time = time;

170

max_value = raw_dat[i];

)
if((peak_found == TRUE) && (end_found == FALSE))

{
max_value = max(max_value,raw_datli});
if(max_valuc == raw_dat[i]) pcak_time = time; /* Found a better peak */
} ,
if((store_stope[0] >= 0) && (store_slope[1] == -1) &&
(store_slope[2] >= 0) && (peak_found == TRUE))
{ - /* Found end */
beg_found = FALSE,
peak_found = TRUE;
end_found = TRUE;
end_time = time;
for(j=0;j<3;j++) store sInch]
prev_ slope = O;slope = 0,
min_value = raw dat[x]
if(min_value < (0.15*max_value)) bcg_found TRUE;
: /* Definitely found enu ¥/
) v _
if(end_found == TRUE)
{
min_value = min(min_value,raw_dat[i]); ‘
if(min_value == raw_dat[i]) end_time = time; /* Found a better cnd */
if(min_value < (0.15*max_value)) bep_found = TRUE;
/* Definitely found end */
)
~ if((beg_found==TRUE) && {end_found==TRUE))
{ .
time_arr[iii} = beg_time:
time_arr[iii+1] = peak txmc.
time_arr{iii+2] = max_valuc;
time_arr[iii+3] = end_time;
if(peak_found == FALSE)
{
beg_time = time;
beg_found = TRUE;
)

else

beg_found = FALSE;
if(data_type == 'm') thershold = 0.02;

}
peak_found = FALSE;end_found = FALSE;

iii+=4;

1

if((data_type == 'm') && (max_value - .(0.3*max_y))) iii = 4;
max_value=-5000;min_value=5000;
}
time += time_inv;
}
farfree((void *)raw_dat);
)
while(finish_flag==FALSE);
if(peak_found == TRUE)
{
* time_arr[iii] = beg_time;
" time_arr[iii+1] = peak_time;
time_arr{iii+2} = max_value;
if((beg_found == FALSE) && (end_found == TRUE))
time_arr{iii+3) = end_tirac;
else time_arr[iii+3] = stop_time;
iii +=4;
if((data_type =='m') && (max_value < (0.3*max_y))) iii -= 4,
)
numwords[0] = iii/4,
return{time_arr);

}

Itt!*****t*****t***#*#***********#************#**************************

The following strips raw data out of data file, skips data intervals,
& returns data.

Inputs:
beg_time - beginning time
end_time - ending time
mult_num - word multiple number
~filename - complete file name (i.e. contains complete path & drive).
data_type - (p)hoto or (m)ic
skip_intv - skip data interval size

Outputs:
n - size of output buffer
out_buf - processed output buffer

Global:
complete_file_name - filename to be processed (includes path & drive)

start_tirne & stop_time - uscd in convert_data()
#!.#l*#t*‘t*#‘#tttt####*‘*tttt‘**t*t#t#*#‘*t#t*#t**##****t‘tt#tt**#‘t##*/

float *find_data(char filename(],char data_typc[],float beg_time,
float end_time,unsigned mult_nura,unsigned *skip_int,unsigned long *n)

172

float huge *convert_data(unsigned *,unmgncd,char[] unsigned long *);
double fract,intpart;

float *out_buf,huge *raw_dat,fs;

unsigned long buf_size,max_iii,beg_n=0,end_n=0,i=0,ii=0,iii=0;
unsigned finish_flag,max_mult_num;

strepy(complete_file_name, filename);
get_file_info(&max_mult_num,&numbytes);
/* where: max_mult_num = number of words and/or sentences & */
* numbytes = window size used to record data */
close(file_handle); /* "file_handlc" is a global variablc used by Ji

/* get_file_info to open files and leave open */
start_time = 0;stop_time = numbytes/22.0/2500.0;
if(data_type(0] == 'p’) fs = 2500.0;
else fs = 25000.0;
beg_n=(unsigned long)ﬂoor(bcg_ume*fs/(ﬂoat)skxp_ml[O])*shp_mt[O],
end_n=(unsigned long)ceil(end_time*fs/(float)skip_int[0])*skip_int[0];
if(end_n > (unsigned long)(stop_time*fs))
- end_n = (unsigned long)floor(stop_time*fs/(float)skip_int[0])*skip_int[0];
max_iii = (end_n-beg_n)/(unsigned long)skip_int[0] + 1L;
if(max_iii > farcoreleft()/2/8)

|
max_iii = farcoreleft()/2/8;
- skip_int[0) = (unsigned)((end_n-beg_~)/(max_iii - 1L));

if((out_buf = farcalloc(max_iii+1,sizeof(ii at))) == NULL)
{ .
printf("ERROR(1): out_buf buffer allocation failed\n");
printf("Location: iso_pho_env() routine in proc_spc.c.\n");
perror("");exit(0);

)

finish_flag=TRUE;ii = 0;iii = 0;
do
{

/* Find beg.\& ond of words */

raw_dat = convert__data(&ﬁnish__ﬂag,mult_num\,data__type,&buf_,size);
for (i=0;i<buf_size;i++) /* Store points ir. “ut buffer */
{ /* & skip every "skip_im one */
fract = modf((double)(ii/skip_int[0]),&intpart);
if{((fract == 0) && (ii >= beg_n) && (ii <=end|n))
{
if(data_type[0] == 'p’) raw_dat[i] += 2.5;
out_buiTiii] = raw_dat{i]; _
iii++;
if(iii >= max m)

173

{
finish_flag = TRUE;

break;

)
)
iil++;
if((ii > end_n) Il (iii >= max_iii))
{ .

finish_flag = TRUE;

break;
}

} .

farfree((void *)raw_dat),

} .
while(finish_flag==FALSE);
*n = jii;

return{(void *)out_buf);

}

float calc_pitch(float arr{],unsigned long count,float freq_res)
{

unsigned long i,start_i;

float max_amp,freq,fo,amp,thershold;

thershold = 100000;
max_amp=-500;
start_i = floor(80.0/freq_res);
for(i=start_i;i<count;i++) /* Finding Ist max */
{
freq = i*freq_res;
amp = arr[i]*arr[i]*arr(i];
max_amp = max(max_amp,amp);
if(max_amp > thershold)
{
if(max_amp == amp) fo = freq;
else break;
)
) ,
return(fo);

}

174

"FFT.c" Source Program .

/***#***************************

PROGRAM: 1 DIMENSIONAL FAST FOUTIER TRANSFORM PROGRAM
ALGORITH: DECIMATION IN TIME, RADIX 2, INPLACE FAST FOURIER

TRANCFORM
AUTHORS: COOLEY, LEWIS AND WELCH

- CODE: MATT DIERKING - USAF/FORIEGN TECHNOLOGY DIVISION

VERSION S MAR 85

B0 2k o ke o ok ok o ok o ok ok ok o ok e ok o e ok o e o o ke s ik o e ok o ok o ok ok ok ok ok e ok ok ofe ok ok ok o o o ke o o ok o ok ok ok o ok ok ok

THIS PROGRAM CALCULATES THE DISCRETE FOURIER TRANSFORM FOR
A ‘ .
SEQUENCE OF DATA OF LENGTH N, WHERE N IS EQUAL TO M**2. THE
CALCULATION IS DONE USING THE COOLEY AND TUKEY ALGORITHM FOR

DECIMATION IN TIME, RADIX 2.

PROGRAM INPUTS:
A_R FLOAT THIS IS THE INPUT REAL DATA SEQUENCE FOR WHICH

THE FOURIER TRANSFORM IS DESIRED.
A_l FLOAT THIS IS THE INPUT IMAGINARY DATA SEQUEI\CE FOR

WHICH
THE FOURIER TRANSFORM IS DESIRED.
M INTEGER THE POWER OF TWO WHICH INDICATES THE NUMBER
OF SAMPLES IN THE SEQUENCE.
INV INTEGER FLAG TO INDICATE WHETHER THE TRANSFORM OR

ITS
INVERSE IS TO BE CALCULATED.
} 0 - TRANSFORM
1 - INVERSE TRANSFORM
PROGRAM OUTPUTS:

AR&A
FLOAT THESE ARE THE FOURIER TRANSFORMS OF THE INPUT

SEQUENCE. THIS IS AN INPLACE ALGORITH, IE.
THE OUTPUT OF THE ALGORITHM REPLACES THE
INPUT DATA.

t‘**#**#****#*#*******************##**************#*#*************t*/

#include <dos.h>
#include <math.h>

175

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <graphics.h>

#define pi 3.14159265358979
typedef struct

"~ float R;
float I;
} complex;

ff12(float huge *A_Rfloat huge *A_L,unsigned M,int INV)
{

unsigned long 1,IP,J, K,N,L,LE LE1 NM1,NV2;

complex U,ULLW,T;

float ANG;

UR=0UI=0WR=0WI=0TR= 0:TI=0;
N = (unsigned long) 1 << M;
NV2=N/2:NMl =N-1;J] =1;

for (I=1; I<=NM1; I++)
{
if(I<))

{
TR =A_R[-1};
T3 =A_1(-11
A_R[J-1] = A_R[I-1};
A_I(J-1] = A_1{I-1];
A_R[I-1]=T.R;
A_ll-1]=TIL

)

K =NV2;

while (K < J)

I=1]K;
K =K/2;
)
J=J+K;

}
for (L=1; L<=M ;L++)
(

176

}

LE = (unsigned long) 1 << L;
LEl =LE2;

UR=1.0;

U.1=0.0;

ANG = pi/ (float) LE1;

W.R = cos(ANG);

W.I = sin(ANG);

if INV 1=0) WI=-W.I;

for (J=1; J<=LElL; J++)

{ ‘
for (I=J; 1<=N; I+=LE)

{

IP =1+LEIL; .

T.R = (A_R[IP-(unsigned long)1] * U.R) - (A_I[1P-(unsigned long)1] * U.D);
T.I = (A_R[IP-(unsigned long)1] * U.D) + (A_I[IP-(unsigned long)1] * U.R);
A_R[IP-(unsigned long)1] = A_R[I-(unsigned long)1] - T.R;
A_I[IP-(unsigned long)l] = A_I{I-(unsigned long)1] - T.L

A_R[I-(unsigned long)1] = A_R[I-(unsigned long)1] + T.R;

A_I[I-(unsigned long)1] = A_I[I-(unsigned long)1] + T.I;

)

ULR=(UR*W.R)- (UI*W.D);
Ull=(UR*W.D+UI*WR)
UR =ULR;

Ul =ULL

} .
if (INV !=0)
for (I=1; I<=N; I++) -

}

A_R[I-1]1/=N;
A_l[l-1]1/=N;

return;

177

"Conv_dat.c” Source Program .

SRRk kO ok ok ok A KRR R KK ok ok ok ok ko Kok o ok ok ok ok oK ok ok Ak ok ok ok ok ok KoK ok ok ok K

Data convertion program that strips out merged photo data from
microphone data and returns either. The routine fills a buffer with
converted float data from a binary file.

I/p & O/p varibles: .

finished_flag: If i/p - tells routine that this is a new run.
If o/p - tells calling routine whether this
routine is finished converting data,

plot_num: I/p only - Tells this routine which multiple word
number to convert (e.g., if plot_num =3 then this
routine will convert the 3rd multiple of a
particular word.

data_type: I/p only - Tells this routine which data type
(mic or photo) to convert. .

store_buf_size: O/p only - Tells calling routine size of converted
buffer.

Global varibles:

complete_file_name: (I/p only) Calling routine must provide this
(include drive and path). This routine will then
call "get_file_info" that uses this variable to open
a particular word file (e.g., "rawdat.000"). It also
leaves the file open and data pointer set 1st byte
to be converted.

file_handle: (/p only) Returned after calling "get_file_info".
This routine will used read from data file and
then close the file. :

start_time: (I/p only) This routine uses this time to find
starting position of file left open after calling
"get_file_info". Since this is a global variable
used by other routines, the calling routine must

~ reset "start_time" to original value when finished.

stop_time: (O/p only) This routine uses this time to tell
calling routine ending position of word file.
Since this is a global variable used by other
routines, the calling routine must reset "start_time"
to original value when finished.

Program: conv_spc.c

Programmer: Patrick T. Marshall
Date: 2/25/91

178

Organization: WRDC/AAWP-2, .
" WPAFB, OH 45433
Phone: (513) 255-2471

#***#***************************/

#include <bios.h>
#include <time.h>

~ #include <conio.h>
#include <io.h>
#include <fcntl.h>
#include <sys\types.1i>
#include <sys\stat.h>
#include <dos.h>
#include <math.h>
#include <sudio.h>
#include <stdlib.h>

- #include <alloc.h>

#include <dir.h>

#include <string.h>

#include "c:\borlandc\thesis\logical.h"
#include "c:\borlandc\thesis\conv_spc.h"

- void get_file_info(unsigned *,unsigned long *);

float huge *convert_data(unsigned *finish_flag,unsigned plot_num,

: char data_type[],unsigned long *store_buf_size)

{
unsigned long md_off(float);
float huge *store_buf;
float max_t,fs,volts;
unsigned exit_routine=0,

- unsigned int far *read_buf; o -
unsigned tol_num_plots,max_par; T
unsigned long beg_byte,floor_val;

‘unsigned long read_buf_size=0,max_int_count=0,store_count=0,int_count=0;
unsigned long i,num_floats=0,start_mem_avail=0;
static float start_t,stop_t

start_mem_avail = farcoreleft();

/* Open file and leave open */
get_file_info(&tol_num_plots,&numbytes);
/* where: tol_num_runs = number of words and/or sentences & */

* numbytes = window size used to record data */
if(plot_num > tol_num_plots)
{

179

printf("ERROR(l): plot_num > tol_num_plots in conve_data routine\n");
exit(1); .
}
max_t = numbytes/22.0/2500.0;
if (*finish_flag == 1) /* New run */
{ ' ‘
if ((stop_time > max_t) Il (stop_time < start_time))
stop_t = max_t; ‘
else
stop_t = stop_time;
if ((start_time > max_t) Il (start_time > stop_hme))

start_t = 0;
else
start_t = start_time; /* static var. controled by this routine */
)
else /* Continue old run */
{ .

start_t = stop_t; /* static var. controled by this routine */
stop_t = stop_time;

}
tol_mem_avail = faccoreleft();
if (*data_type =='p") /* Photo data */
{
fs = 2500.0;
beg_byte = md_off(2.0*fs*start_t*11);
) -
else /* MIC data */
{
fs = 25000.0;

beg_byte = rnd_off(2.0* (fs*start_t+1+floor(fs*start_t/10.0)));

} ‘
/* Throw first 4 bytes & position poinier start byte */
Iseek(file_handle,beg_byte+(piot_num-1)*numbytes+6,SEEK_SET);
int_count = floor((float)(beg_byte/2.0));
num_floats = floor((fs*(stop_t - start_t)));
if (num_floats*4 > tol_mem_avail) /* Won't reach end */
{|
*finish_flag = 0;
store_buf_size[0] = floor(0.98*tol_mem_avail/4.0); /* Stop when buffer used >=
98% */

) /* of available memory */
else/ /* Will reach end */
{

*finish_flag = 1;
store_buf_size[0] = num_floats; /* Siop when buffer used = number floats */

180

1
PR }

if ((store_buf = farcalloc(store_buf_size[0],sizeof(float))) == NULL)
{ ' : , . ‘
printf("ERROR(3): storage buffer allocation failed in convert_data routine.\n");
o perror(""); '
e exit(1);
e }
. tol_mem_avail = farcoreleft();
T ~if (tol_mem_avail > 64000) /* Check for read buffer size limitation */
read_buf_size = 32000; '
g else .
read_buf_size = floor(tol, mem_avail/2.0);;
if (*data_type =='p") /* Photo data */
max_int_count = 11*store_buf_size[0];
else /* MIC data ¥/

max_int_count = i+floor((float)store_buf_size[0]/10.0)+store_buf_size[0];
max_int_count += int_count; '
if (read_buf_size > max_int_count) read_buf_size = max_int_count; .
if ((read_buf = tarcalloc(read_buf_size,sizeof(int))) == NTJLL)

printf("ERROR(2): read buffer allocation failed in convert_data routine.\n");
perror(""); ’ :
exit(1);

b

do

et T

“if ((read(file_handle,read_buf,read_buf_size*
sizeof(int))) == -1)
{

printf("ERROR(4): read failed in convert_data routine.\n");
perror("");
exit(1);

)

for (i=0;i<read_buf_size;i++)
{
if (read_buf[i] > 4096)

printf(”ERROR(S) in convert_data: Byte Error - read_buf > 4096'\n");
exit(1); : .
}
volts = 5.0/4096.0*(float)(read_bufTi])-2.5;
PO if ((volts > 2.5) Il (voits < -2.5))
e {
R printf("ERROR(6): Volts = %f \n",volts);
printf("Location: convert_data() routine.\n");

181

getch(); - A
exit(1); ‘
} : |
if ((fmod((float)int_count,11) == 0) && (*data_type =='p")
{ /*Photo data */ ,
store_buf[store_count] = volts;
store_count++;

} .
if (fmod((float)int_count,11) !=0) && (*data_type =='m"))
{ /* MIC data */
store_buf[store_count] = volts;
‘ store_count++;
)
' int_count++;
if ((store_count >= store_buf_size[0]) Il (int_count>=max_int_count))
{ _
exit_routine = TRUE;
break; ‘ /* Exit for loop */
)

}

if (exit_routine == TRUE) break;

if (int_count+read_buf_size>max_int_count)
read_buf_size = max_int_count-int_count;

}
, while (exit_routine == FALSE);
’ stop_t = start_t + (float)store_countiis;

close(file_handle); /* “file_handle" is a global variable used by */
/* get_file_info to open files and leave open */

farfree(read_buf);

return(store_buf);

}

/* Round up-or-down routine */
unsigned long md_off(float number)

{
double frac,intpart;

unsigned long md_off_num;
frac = modf(number,&intpart);
if (frac >=.5) md_off_num = flcor(number)+1; /* Round up */

else rad_off_num = floor(number); /* Round down */
return md_off_num;

132

e)
- ewe.. - e . N - Loah . e PRI
. LA T A RS A L . .-

Y

"Warp.c" Source Program

/**

Time warping program.

Program: warp.c

Programmer: Patrick T. Marshall

Date: 11/19/91 :

Organization:. WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

*****#**/

#include <bios.h>

#include <time.h>

#include <conio.h> }
#include <io.h> |
#include <fcntl.h> |
#include <sys\types.h> _ ' j
#include <sys\stat.h> |
#include <dos.h> j
#include <math.h> |
#include <stdio.h> "
#include <stdlib.h> |
#include <alloc.h> |
#include «dir.h>

#include <string.h>

#include "c:\borlandc\thesis\logical.h"

~ #include "c:\borlandc\thesis\warp.h"

JRERRERRRRR R Rk Rk R Rk kR kR kR kR ok ok bk ok dokokok ook ok ok ok

The following is a Time-Warping routine. Implements DP time-
warping procedure to align two patterns, a & b. Returns
resultant min. cost & the warping function (here called "map").
Stages in DP process “re samples of pattern "a" (the test pattern).
Reference:
Parsons, Thomas W., “Voice and Speech Processing,” pages 297-303
and Appendix B, pages 379-382. New York: McGraw Hill Book Company,

1987. '
Language:
Fortran-77 converted to Borland’s Turbo C by Patrick T. Marshall,
Mar,, 1991.
Variables:
P's:

183

......

<

a: st pattern (test pattern along x-axis) | .
m: number of points in "a" (related to "i " no. of col.')
b: 2nd pattern (referencn (template) pattern along y-axis)

wan

n: number of points in "b" (related to "j" no. of rows)

O/P's:
tcost: cost of optimum path

" map: encoded optimum path (size = m+n-1)
k: length of optimum path

Internal: :
cost: 2-D array of recent accrued costs (n rows by 3 cols)
pred: 2-D array of predecessor goints (n rows by m ¢ols)

steps: 1-D array of +/- integers for slope constraint. "+"

are for vertical steps and "-" are for horizontal
steps.
Constaints and Limitations:

1. Maximun tempate length is limited by size of cost & pred
arrays. This is currently set to 100 which should aliow
a maximum word length of 1.67 sec (1.67 sec = 100/60 Hz
for positive peaks only).

2. Accrued costs are reiained for only two most recent rows of
points. At the end of a row, costs for row 2 (current row)
replace costs for row 1 (previous row) which are no longer
needed.

3. Paths & predecessor-point coordinates are encoded and decoded
into a single 16-bit unsigned integer by means of functions,
"epfunc() & dpfunc()" respectively.

4. The parallelogram method is used to define a "window_width path”.
This is fine provided that "r: & n" are approximately equal.

If m = 2n or n = 2m, the prallelogram collupses into a straight

line (i.e., no warping is accomplished).
HRRRA R RE RN RIS ARK A AR KRAK AR TR TR AR RIRRIRRIHRETRRARR A ERARRRRRK] -

extern int window_width,max_step;

unsigned *warp(float a[],unsigned cols,float b[},unsigned rows,float *tcost,
unsigned *k)
{
void set_up_plt(char[],double,double,double,double,char[});
void plot(float huge *,float.float,unsigned long,int);
void plot2(float huge*,float huge*,unsigned,int);
void print_plot(void);
void erase_plot(void);
void init_plot();
float cfunc(float,float); _
int epfunc(unsigned ,unsigned);

184

void dpfunc(unsigned,unsigned *,unsigned *); .
unsigned nint(float); '
float ¢,c1,c2,c3,slope,offset,huge *cost, HUGE = 1.0e37;

unsigned lim1 lim2,huge *map,huge *step_cnt;

. unsigned x=0,y=0,i,j,ii,jj;

unsigned long huge *pred, kk;
float buf_x[2],buf_y[2];
char ﬁle[31]="“,p'1tpos[3],print_ﬂag;

/* Allocate rows by cols.'s for pred[il(j] */
if ((pred = farcalloc((rows+1)*(cols+1),sizeof(unsigned long))) == NULL

{

printf("ERROR(1): pred buffer allocation failed!\n");
printf("Location: warp() routine.\n");
printf("rows*cols = %d \n",cols*rows);
perror("");
getch();
exit(1);
}
if ((step_cnt = farcalloc(rows+1,sizeof(unsigned))) == NULL)
{ ‘ .
printf("ERROR(2): steps buffer allocation failed\n");
printf("Location: warp() routine.\n");
perror(""); ‘
getch();
exit(1); : _
} _ I* Allocate rows+1 rows by 2 cols.'s for cost[i][j] */
if ((cost = farcalloc((rows+1)*2,sizeof(float))) == NULL)

{
printf"ERROR(4): cost buffer allocation failed'\n");
printf("Location: warp() routine.\n");
printf("rows*3 = %d \n",3*rows);
perror("");
getch();
exit(1);
}
/#
init_plot();
strepy(&file[0],"c:\\borlandc\\thesis\\map.dat");
set_up_plt(file,cols,175,rows,175,"c");
t/ .
slope = (float)(rows- 1)/(float)(cols-1);
offset = (float)(rows - slope*cols); :
for (i=1;i<=cols;i++) /* Loop through "a" */
{ : /* Set max. allowable "Window Width" */

185

lim1 = max(1,nint(slope*i+offset-window_width)); .
lim2 = min(rows,nint(slope*i+offsct+window_width));
for (j=lim1;j<=lim2;j++) /* Loop through "b" %/

c=

cfunc(a[il.b(j]); /* Cost for this point */
/* Cost for path to this point is ...*/

if ((i == 1) && (j == 1)) /* No predecessors */

cost[1+j*2] =c;
pred[i+j*cols] = epfunc(l,1);

}
else /* Must consider 3 possible predecessors */
{
¢l = HUGE;
if (pred[(i-1)+j*cols] > 0)
¢l =cost[0+j*2] +c; /* Horizontal cost */
¢2 = HUGE;

if (pred[(i-1)+(j-1)*cols] > 0)

c2 = cost[0+(j-1)*2] + ¢; /* Diagonal cost */
¢3 = HUGE:
if (pred[i+(j-1)*cols] > 0)

c3 =cost[1+(-1)*2] +¢; /* Vertical cost */
if ((step_cnt[j] > 0) && (c2 < HUGE))

{
¢l = HUGE;
¢3 = HUGE;

if (step_cnt[j] > 0) step_cnt[j]--;
/* Find cheapest cost */
if ((c1 >= HUGE) && (c2 >= HUGE) && (c3 >= HUGE))
pred[i+j*cols] = 0;
else if ((cl <=c2) && (cl <=¢3))

cost{1+j*2] = (float)cl;
pred[i+j*cols] = epfunc(i-1,j);

)
else if ((c2 <=cl) && (c2 <=¢3))

{
cost[1+j*2] = {float)c2;
pred[i+j*cols] = epfunc(i-1,j-1);
}
else if ((c3 <=c¢l) && (c3 <=¢2))

cost[1+j*2] = (float)c3;
pred[i+j*cols] = epfunc(i,j-1);

186

}
)
I*
kk = pred[i+j*cols];
if((kk '=0) && (i !=1) && (j !=1))
{
dpfunc(kk,&x,&y);
buf_x[0] = x;buf_y[0] =y;
buf_x[1] =i;buf_y[1] =j;
plo2(buf_x,buf _y,2,2);

)
*

/* Check for continuous horizontal runs */
if((i>max_step) && (step_cnt[j] == 0))
fqr(ii:i;ii>i-max_step;ii--)

kk = pred[ii+j*colsj; /* Find predecessor */
if(kk==0) break; |
dpfunc(kk,&x,&y); /* Decode kk */

if(y !=) break; |
if(x == i-max step) step_cnt[j] = max_step;
) /* Check for continuous vertical runs */
if((j>max_step) && (step_cnt[jl = 0))
for(jj=j:jj>j-max_step;jj--)
{ |

‘ i
kk = pred[i+jj*cols]; /* Find predecessor */
if(kk==0) break; !
dpfunc(kk,&x, &y)1 /* Decode kk */

- if(x !=1i) break;
if(y == j-max stepi{ step_cnt[j+1] = max_step;
}
’ " /* End of "b" loop */
for (j=lim1;j<=lim2;j++) /* Shift costs down */
cost[0+j*2] = cost[1+j*2];

} /* End of "a" loop */
*tcost = cost{ 1+rows*2]; /* Note total cost */
/#

printf("cost = %f\n",*tcost);
if (getch() ="'p") prmt_plot(),
erase_plot();
*/
farfree((void *)cost);
if ((map = farcalloc(cols+rows,sizeof(unsigned))) == NULL)

{
printf("ERROR(5): map buffer allocation failed!\n");

187

printf("Location: warp() routine.\n");
perror("");

getch();

exit(1);

}

kk = epfunc(cols,rows); /* Work backward from final point */

for (ii=cols+rows- 1;ii>=1;ii--)
{
maplii] = kk;
dpfunc(kk,&i,&j); /* Decode kk */
if (i =1) && (j == 1)) break;
if((ic=0) 1 (j<=0))
{
printf("ERROR(6): decode kk failed'\n");
printf("Location: warp() routine.\n");
getch();
exit(1);
)
if (i > cols) I (j > rows))

{
printf("ERROR(7): decode kk failed!\n");
printf("Location: warp() routine.\n");

getch();
exit(1);
}
kk = pred[i+j*cols]; /* Find next predecessor */
}
*k = cols + rows - ii;ii--;
if (ii > 0) /* Shift map down to start of array */

for (i=1;i<=*k;i++)
mapli) = mapl[i +ii];
farfree((void *)step_cnt);
farfree((void *)pred);
return((void*)map);

} .

/* Cost function used by warp() */
float cfunc(float x,float y)

(

float c;

¢ = pow(x-y,2);
return(c);

}

188

/* Path encoding function used by warp() */ .
int epfunc(unsigned i,unsigned j)

unsigned p=0;

p=256*i+j;
return(p);
}

7* Path decoding function used by warp() and others */
void dpfunc(unsigned kk,unsigned *i,unsigned *j)

*i = floor(kk/256);
*j = (unsigned)fmod(kk,256);
return;

}

/* Nearest integer function used by warp() */
unsigned nint (float x)
{

float p=0;

unsigned q;

p = floor(x)+0.5;
if(p<0) q=0;
else if(p>=x) q = floor(x);
else q = ceil(x);
return(q);
)

. The following is a Linear Time-Warping routine. Implements time-
warping to align two patterns, a & b, with respect to their peaks.
Returns warped function (here called "warped_buf").

Variables:

I/P's:
a: Pattern to be warped
m: number of points in "a"
b: Reference pattern (template)
n: number of points in "b"

O/P's:
warped_buf: resultant warped a buffer -

#**************t***#*************;
float *linear_warp(float a[],unsigned m,float b[},unsigned n)

189

/##**#**#**#******

"Acq_dat.c" Source Program

/*
Program contains aquisition speech functions used by main.

Program: aqc_spc.c

Programmer: Patrick T. Marshall

Date: 2/25/91

Organization:. WRDC/AAWP-2,
WPAFB, OH 45433

Phone: (513) 255-2471

Noies:

1. There are 12 isolated words numbered "0" through "11". In addition,

- there are 7 continuous words numbered "12" through "18". If the external
char variable "op_mode[0]" defined in acq_spc.h (originally from
data_acquisition() routine in speech4.c) is equal fo "i" then work
in the isolated mode. Otherwise assume continuous mode.

*

#pragma check_stack(off)

#include <bios.h>

#include <time.h>

#include <conio.h>

#include <io.h>

#include <fcntl.h>

#include <sys\types.h>

#include <sys\stat.h>

#include <dos.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

#include <dir.h>

#include <string.h>

#include "c:\vorlandc\thesis\logical.h"
#include "c:\borlandc\thesis\acq_spc.h"

/* Function prototypes */

int alloc_dma_buf(void); /* Allocate dma buffers */

void intr_setup(void); /* Set up interrupt operation */
void dma_setup(void); /* Set up dma operation */
void dma_finish(void); /* Called via atexit() mechanism */

192

void interrupt far dma_isr(void); : .
void start_dma(char for *,unsigned); /* Start a dma operation */
void init_brd(void); /* Initialize A/D board */

void on_brd(void); /* Turn A/D board on */

void acquire_data(void);

void wait_message (int, int, char*, char*);

void message (int, int, char*, char*);

void clear_message (void);

void build_path (char*, char*, char*, int);

void restore_window(void);

void acquire_data()
{ ,
unsigned i,offset,word_scram_»ffset;
unsigned long count,num_bytes=0,byte_count=0;
long mem; .
int next_count,prev_count,start_count,run_cnt;
int start_word,stop_word;
char filename[81];
struct dfree disk; _
FILE *fileptr; /* File pointer for word file "word.Ist" */

numbytes = (unsigned long)(2.0*(25000+2500)*ts);
/* Load the word array & create files */
if(lop_mode[0] ==T)
{
start_word = 0;stop_word = num_words;start_count = 1;
strepy(filename,"c:\\borlandc\\thesis\\isoword.lst");

else
{

start_word = 12;stop_word = 12 + num_words;start_count = 13;

strepy(fiiename, "c:\\borlandc\\thesis\\coritword 1st");

}

if ((fileptr = fopen(filename,"r")) == NULL)

{
wait_message(0,7,"WARNING: fopen of word.lIst file failed! ",
"Location: aquire_data() routine in ACQ_SPC.C");

}

for (count=start_word;count<stop_word;count++)

{

fgets(word_buffer{count},40,fileptr);

build_path(complete_file_name,drive,path,count);

if ((file_handle = open(complete_file_name,

193

!

O_WRONLYIO_CREATIO_TRUNCIO_ BINARYIO _APPEND,S_IREADIS_IWRI

TE)) ==-1)

{

}

message(0,15,"ERROR(1): raw data file open failed! \n",

"Location: aquire_data() roatine in ACQ)_SPC.C");

if (write(file_handle,&num_runs,sizeof(int)) == -1)

wait_message(0,7,"ERROR(2): write buffer failed!",
"Location: aquire_data() routinc in ACQ_SPC.C");

if (write(file_handle,&numbytes,sizecof(unsigned long)) == -1)

wait_message(0,7,"ERROR(3): writc buffer failed!",
"Location: aquire_data() routine in ACQ_SPC.C");

close(file_handle);

}

prev_count = 0;

if (fmod(num_words,2) == 0) word_scram_offset = 1;
else word_scram_offset = 0;

for (run_cnt=0;run_cnt<num_runs;-un_cnt++)

{

next_count = start_count-1;
for (count=start_word;count<stop_word;count-++)

{
getdfree(0,&disk);
mem=farcoreleft();
message(0,7,"Hit any key!","");
getch();restore_window();

build_path(complete_file_name,drive,path,next_count);
if ((file_handle = open(complete_file_name,O_WRONLYIO_BINARYIO APPEND,

{

S_IREADIS_IWRITE)) ==-1)

message(0,15,"ERROR(4): file open failed!",
"Location: aquire_data() routine in ACQ_SPC.C");

}

textcolor (LIGHTRED);

prev_count = next_count;
message(0,10,word_butfer[next_count], "");
if((*op_mode =="1') Il (*op_mode == 'T"))

{ /* The following is for the isolated word scambler. */

)

next_count = next_count + start_count;

if (next_count > num_words-1)
next_count = next_count - num_words - werd_scram_offset;

if ((start_couit == num_words) && (next_count == prev_count))
next_count = next_count - 1;

else

194

" next_count++; ' .
textcolor (LIGHTGRAY); '
init_brd(); . /* Initialize A/D board */

/* Allocate buffers only once */
alloc_dma_buf();
if ((un_cnt ==0) && (count == start_word)) /* Only do this once */
for (i=0;i<numbuffers;i++) /* to insure will have exact */
num_bytes += dma buffers[ll s; /* same window byte size/transfer */
buf_index = 1; :
-if(numbuffers > 1)

)

{
dma_chan = 3; . ;
dma_setup(); /* Set chan 3 up for DMA operations */
start_dma(dma_buffers[1].p,dma_buffers[1].s); /* Start up data acq */ -
intr_setup(); ,I* Set up DMA IRQ3 interrupt */
dma_chan=1;
dma_setup(); /* Set chan 1 up for DMA operations */

start_dma(dma_buffers[0]. p dma _buffers[0].s); /* Start up data acq */
~on_brd();
delay(200); /* Pause for 200 milliseconds */ .

while(TRUE)

if (irq_flag)
{
buf_count++;
if (irg_flag == 2) break
irg_flag = 0;
)
)
~ for (i=0;i<cnumbuffers;i++)
byte_count += (unsigned long) dma_buffers[i].s;
if (numbytes != num_bytes)
{
dma_finish();
wait_message(0,7,"ERROR(S): byte window size changed between transfers”,

"Location: aquire_data() routine in ACQ_SPC.C");

return;
/* Throw out first 4 MIC bytes */

}

if (i == 0) offset = 4;
else offset = 0;

if (write(file_handle, dma_buffers[i].p+offset,dma_buffers[i]. s-offset) ==-])

dma_finish();

195

R——

wait_mcssage(0,7,"ERROR(6): write buffer failed!”,
"Location: aquire_data() routine in ACQ_SPC.C");
return; '

} }
numbytes = (unsigned long)(2.0*(25000+2500)*ts);
byte_count = 0;irq_flag = 0;

dma_finish();

restore_window();

close(file_handle);
} /* End of inner locp */

start_count++;
if (start_count > num_words) /* Have to reset counter*/

{
if((*op_mode =="1') Il (*op_mode == T)) start_count = 1;
else start_count = 13; :
)
} /* End of outer loop */ _
/* Since "alloca_dma_buf()" modifies numbytes, have to rewrite data at */
/* beginning of file. */
num_bytes -=4; /* Throw out first 4 MIC bytes */
for (count=start_word;count<stop_word;count++)
{ |
build_path(complete_file_name,drive,path,count);
if ((file_handle = open(complete_file_name,0O_WRONLYIO_BINARY,
j S_IREADIS_IWRITE)) == -1)

{ |
message(0,15,"ERROR(7): file open failed! \n",
"Location: aquire_data() routine in ACQ_SPC.C");
exit(0);
)
if (write(file_handle,&num_runs,sizeof(int)) == -1)
wait_message(0,7,"ERROR(8): write buffer failed!",
"Location: aquire_data() routine in ACQ_SPC.C");
if (write(file_handle,&num_bytes.sizeof(unsigned long)) ==-1)
wait_message(0,7,"ERROR(9): write buffer failed!",
"Location: aquire_data() routine in ACQ_SPC.C");
close(file,_handle);
}
fclose(fileptr);
return;

}

196

Bibliography

1. Petajan, Eric D. "Automaiic Lipreading to Enhance Speech Rucognition;" IEEE Global
Telecomniunications Conference. 265-272. New York: IEEE Press, cvember 1984,

2. Alex Pentland and Kenji Mase "L.p reading: Automam. Visual Recognition of Spoken
Words,” M.LT. Media Lab Vision Science Technical Report 117:1-9 (January 1989).

3. Kabrisky, Matthew. Thesis advisory meetings and telephone conversations. School of
Engineering, Air Force Institute of Technolcgy (AU), Wright-Patterson AFB OH, June

1990 - August 1992.

4. Pyroelectric Infrared Sensor IRA Series. Product Catalog SO1E-S. muRata Erie Morth
America, Smyma, GA, 1988.

S. Amperex Electronic Corporation Techmcal Pnblication 163 Slatersville Division,
Smithrield, RI, undated.

6. Silicon Photodiodes Optoelectronics Data Book. EG&G Vactec Optoelectronics, St.
Louis MO, 1990.

7. Photosensor Product Catalog. Advanced Optoelectronics, City of Industry CA, 1989.

8. Saito, Shuzo and Nakata, Kazuo. Fundamentals of Speech Signal Processmg, Academic
Press, 1985.

9. General Purpose Detectors Technical Data Sheet. Silicon Detector'Corporation,
Camarillo CA, undated. '

| 10. Parsons, Thomas W. Voice and Speech Processmg ‘McGraw-Hill Series in Electrical
Engineering, 1987.

11. Bevington, Philip R. Data Reduction and E:ror Analysis for the Physical Sciences.
McGraw-Hill Book Company, 1969.

12. Rabiner, L. R. and Schafer, R.W. Digital Processing of Speech Signal, Prentice-Hall,
1978.

13. Eggebrecht, Lewis C. Interfacing to the IBM Personal Computer, Howard W. Sams
and Company, 1990. : |

14. MAX167ACNG A/D Specifications Sheet. MAXIM, Sunnyvale CA, 1990.

197

71 B Sl >-"'§‘ﬁtk:-‘,‘-‘*9)?m,z{é~'mﬁm'-.»“;gn;‘ﬂg;:_w@gasm‘@ﬁ VoA R o N Y

15. Nolan, Tom. "Real-Time Data Acquisition Using DMA," Dr. Dobb's journal, pages
28-37,94-96 (January 1990).

198

A

W E RS R

form Approved

REPORT DOCUMENTATION PAGE OME 0188
PO et ST Lurder 100 thiy (oNection Of (TSI anion s PtiMated to Average) mour 08t rospatse LLIuair g the Lme for rr;u—wn: INSTIUCTIZ NG §0a% Ner L eaighing G50 S0ur.ey
Jatrern] a0 Martuning the gata noeded, and (OMDIEtinG And “eviewIng the :Zliecticn 0 1IntOrMation SeNQ (CMMeNts te3araifg thiy Durden ectimate of any Sther 3spect of this
COHRIL IR L nfarmatan aCuling IugGeStions 1O 18duting this Burden 10 Washinglon Headduarters services, [reciorate for intarmaton yreratinr, 4ng mepnrty 1215 settenon
Davia i 3 way Sute 1224 arlington, VA 2122024302 and 10 tre Otfie of Management and guaget, Paperv.ora Redurtion Preiect (0704.0188; #vasringion, (.0 80503
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Sep 92 Final Jun 90 = Jan 93
5. FUNDING NUMBERS

4. TITLE AND SUBTITLE _
Speech Recognition Using Visible and Infrared Detectors

6. AUTHOR(S)
Patrick T. Marshall

7. PEFFORMING ORGANIZATION NAME(S) AND ACORESS(ES) 8 zésg%f;rwgascgmmzanon
AFIT/ENG, BLdg 640 :
2950 2 Sst. _ AFTT/GE/ING/¥34-01 -

WPABB, OH 45433-7765

10. SPONSORING MONITORING

9. SPONSORING ! MONITORING AGENCY NAME(S) AND ADDRESS(ES)
: AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

122

Approved for Public Release: Distribution Unlimited

DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CGDE

13. ABSTRACT (Maximum 200 words)

A system has been developed that tracks lip motion using infrared (IR) or visible detectors. The
purpose of this study was to determine if the additional information obtained from the IR or -
visible detectors can be used to increase the recognition rate of audio Automatic Speech -
Recognition (ASR) systems. To accomplish this goal, several hardware analog prototypes had to
be designed, built and tested. Different detectors (IR and visible) and modes of operation (active
and passive) were tried before a reliable and useful signal was found. An analog-to-digital (A/D)
board was then designed and built that digitized both the microphone and photo signals.
Software algorithms, executed from a desktop PC, were used to interface with the A/D board,
the digitized data, and perform certain optical and audio ASR experiments. The results
showed that isolated ASR audio recognition rates increased after using additional information
ained from the photo speech signals. However, the results for the continuous case were
inconclusive since not all of the available photo information was utilized to perform ASR

experiments.

14, SUBJECT TERMS NS 15. NUMEER OF PAGES
Speech recognition, IR, Visible, Detectors, Audio, DIV, 207
Photo, Sensors, ASR, A/D 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF TMIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 . . Standard Form 298 (Rev 2-89)
l:;-:sc.v‘:l;ec By ANS' Stg 239-'8
Low L . ‘\ “ ~ \.\\\‘ '. '/,‘-
;o N

et

R iheingenr,

